Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(16): 2576-2586, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37184252

RESUMO

Prevention of Type 2 diabetes mellitus (T2DM) pandemic needs markers that can precisely predict the disease risk in an individual. Alterations in DNA methylations due to exposure towards environmental risk factors are widely sought markers for T2DM risk prediction. To identify such individual DNA methylation signatures and their effect on disease risk, we performed an epigenome-wide association study (EWAS) in 844 Indian individuals of Indo-European origin. We identified and validated methylation alterations at two novel CpG sites in MIR1287 (cg01178710) and EDN2-SCMH1 (cg04673737) genes associated with T2DM risk at the epigenome-wide-significance-level (P < 1.2 × 10-7). Further, we also replicated the association of two known CpG sites in TXNIP, and CPT1A in the Indian population. With 535 EWAS significant CpGs (P < 1.2 × 10-7) identified in the discovery phase samples, we created a co-methylation network using weighted correlation network analysis and identified four modules among the CpGs. We observed that methylation of one of the module associates with T2DM risk factors (e.g. BMI, insulin and C-peptide) and can be used as markers to segregate T2DM patients with good glycemic control (e.g. low HbA1c) and dyslipidemia (low HDL and high TG) from the other patients. Additionally, an intronic SNP (rs6503650) in the JUP gene, a member of the same module, associated with methylation at all the 14 hub CpG sites of that module as methQTL. Our network-assisted EWAS is the first to systematically explore DNA methylation variations conferring risks to T2DM in Indians and use the identified risk CpG sites for patient segregation with different clinical outcomes. These findings can be useful for better stratification of patients to improve the clinical management and treatment effects.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Epigenoma/genética , Epigênese Genética/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Ilhas de CpG/genética , Metilação de DNA/genética
2.
Hum Mol Genet ; 32(19): 2929-2939, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37498167

RESUMO

Human disease-associated genetic variations often map to long non-coding RNA (lncRNA) genes; however, elucidation of their functional impact is challenging. We previously identified a new genetic variant rs4454083 (A/G) residing in exon of an uncharacterized lncRNA ARBAG that strongly associates with plasma levels of C-peptide, a hormone that regulates insulin bioavailability. On the opposite strand, rs4454083 also corresponds to an intron of a cerebellum-specific GABA receptor subunit gene GABRA6 that mediates strengthening of inhibitory synapses by insulin. Here, we show that alleles of rs4454083 modulate transcript levels of the antisense gene, ARBAG, which then controls the expression of the sense gene, GABRA6. Predisposing to low C-peptide, GG (a minor allele genotype across ethnicities) stabilizes ARBAG lncRNA causing higher transcript levels in cerebellum. ARBAG lncRNA abundance leads to cleavage of GABRA6 mRNA at the complementary region, resulting in a dysfunctional GABRA6 protein that would not be recruited for synapse strengthening. Together, our findings in human cerebellar cell-line and induced Pluripotent Stem Cells (iPSCs) demonstrate biological role of a novel lncRNA in determining the ratio of mRNA isoforms of a protein-coding gene and the ability of an embedded variant in modulating lncRNA stability leading to inter-individual differences in protein expression.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Peptídeo C/genética , Peptídeo C/metabolismo , Estudo de Associação Genômica Ampla , Cerebelo/metabolismo , RNA Antissenso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
3.
Mol Genet Genomics ; 299(1): 85, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230791

RESUMO

Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.


Assuntos
Glicemia , Metabolismo dos Carboidratos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Humanos , Índia/epidemiologia , Glicemia/metabolismo , Masculino , Metabolismo dos Carboidratos/genética , Feminino , Diabetes Mellitus Tipo 2/genética , Adulto , Predisposição Genética para Doença , Pessoa de Meia-Idade , Metilação de DNA/genética , Multiômica
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209109

RESUMO

Atherosclerosis is a well-known global health problem. Despite the high prevalence of the disease, numerous aspects of pathogenesis remain unclear. Subsequently, there are still no cure or adequate preventive measures available. Atherogenesis is now considered a complex interplay between lipid metabolism alterations, oxidative stress, and inflammation. Inflammation in atherogenesis involves cellular elements of both innate (such as macrophages and monocytes) and adaptive immunity (such as B-cells and T-cells), as well as various cytokines cascades. Because inflammation is, in general, a well-investigated therapeutic target, and strategies for controlling inflammation have been successfully used to combat a number of other diseases, inflammation seems to be the preferred target for the treatment of atherosclerosis as well. In this review, we summarized data on targeting the most studied inflammatory molecular targets, CRP, IL-1ß, IL-6, IFN-γ, and TNF-α. Studies in animal models have shown the efficacy of anti-inflammatory therapy, while clinical studies revealed the incompetence of existing data, which blocks the development of an effective atheroprotective drug. However, all data on cytokine targeting give evidence that anti-inflammatory therapy can be a part of a complex treatment.


Assuntos
Imunidade Adaptativa , Anti-Inflamatórios/uso terapêutico , Aterosclerose , Citocinas/imunologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206708

RESUMO

Atherosclerosis has complex pathogenesis, which involves at least three serious aspects: inflammation, lipid metabolism alterations, and endothelial injury. There are no effective treatment options, as well as preventive measures for atherosclerosis. However, this disease has various severe complications, the most severe of which is cardiovascular disease (CVD). It is important to note, that CVD is among the leading causes of death worldwide. The renin-angiotensin-aldosterone system (RAAS) is an important part of inflammatory response regulation. This system contributes to the recruitment of inflammatory cells to the injured site and stimulates the production of various cytokines, such as IL-6, TNF-a, and COX-2. There is also an association between RAAS and oxidative stress, which is also an important player in atherogenesis. Angiotensin-II induces plaque formation at early stages, and this is one of the most crucial impacts on atherogenesis from the RAAS. Importantly, while stimulating the production of ROS, Angiotensin-II at the same time decreases the generation of NO. The endothelium is known as a major contributor to vascular function. Oxidative stress is the main trigger of endothelial dysfunction, and, once again, links RAAS to the pathogenesis of atherosclerosis. All these implications of RAAS in atherogenesis lead to an explicable conclusion that elements of RAAS can be promising targets for atherosclerosis treatment. In this review, we also summarize the data on treatment approaches involving cytokine targeting in CVD, which can contribute to a better understanding of atherogenesis and even its prevention.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Suscetibilidade a Doenças , Sistema Renina-Angiotensina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Aterosclerose/diagnóstico , Aterosclerose/terapia , Biomarcadores , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Avaliação Pré-Clínica de Medicamentos , Endotélio/metabolismo , Humanos , Terapia de Alvo Molecular , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 522(4): 1022-1029, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31813547

RESUMO

Genome wide association study for type 2 diabetes discovered TMEM163 as a risk locus. Perturbations in TMEM163 expression was reported to be associated with impaired intracellular zinc homeostasis. Physiological concentration of zinc is instrumental to maintain insulin storage and functionality in pancreatic ß cells. We found abundant TMEM163 expression in human pancreas, both at transcriptional and translational levels. Knockdown of endogenous Tmem163 in MIN6 cells resulted in increased intracellular zinc and total insulin content, coupled with compromised insulin secretion at high glucose stimuli. Furthermore, Tmem163 knockdown led to enhanced cellular glucose uptake. Upon next generation sequencing, one-third of the studied T2D patients were found to have a novel missense variant in TMEM163 gene. Study participants harboring this missense variant displayed a trend of higher glycemic indices. This is the first report on exploring the biological role of TMEM163 in relation to T2D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Zinco/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Índia , Espaço Intracelular/metabolismo , Mutação com Perda de Função/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética
7.
Mol Genet Genomics ; 295(4): 1013-1026, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363570

RESUMO

Obesity, a risk factor for multiple diseases (e.g. diabetes, hypertension, cancers) originates through complex interactions between genes and prevailing environment (food habit and lifestyle) that varies across populations. Indians exhibit a unique obesity phenotype with high abdominal adiposity for a given body weight compared to matched white populations suggesting presence of population-specific genetic and environmental factors influencing obesity. However, Indian population-specific genetic contributors for obesity have not been explored yet. Therefore, to identify potential genetic contributors, we performed a two-staged genome-wide association study (GWAS) for body mass index (BMI), a common measure to evaluate obesity in 5973 Indian adults and the lead findings were further replicated in 1286 Indian adolescents. Our study revealed novel association of variants-rs6913677 in BAI3 gene (p = 1.08 × 10-8) and rs2078267 in SLC22A11 gene (p = 4.62 × 10-8) at GWAS significance, and of rs8100011 in ZNF45 gene (p = 1.04 × 10-7) with near GWAS significance. As genetic loci may dictate the phenotype through modulation of epigenetic processes, we overlapped genetic data of identified signals with their DNA methylation patterns in 236 Indian individuals and performed methylation quantitative trait loci (meth-QTL) analysis. Further, functional roles of discovered variants and underlying genes were speculated using publicly available gene regulatory databases (ENCODE, JASPAR, GeneHancer, GTEx). The identified variants in BAI3 and SLC22A11 genes were found to dictate methylation patterns at unique CpGs harboring critical cis-regulatory elements. Further, BAI3, SLC22A11 and ZNF45 variants were located in repressive chromatin, active enhancer, and active chromatin regions, respectively, in human subcutaneous adipose tissue in ENCODE database. Additionally, these genomic regions represented potential binding sites for key transcription factors implicated in obesity and/or metabolic disorders. Interestingly, GTEx portal identify rs8100011 as a robust cis-expression quantitative trait locus (cis-eQTL) in subcutaneous adipose tissue (p = 1.6 × 10-7), and ZNF45 gene expression in skeletal muscle of Indian subjects showed an inverse correlation with BMI indicating its possible role in obesity. In conclusion, our study discovered 3 novel population-specific functional genetic variants (rs6913677, rs2078267, rs8100011) in 2 novel (SLC22A11 and ZNF45) and 1 earlier reported gene (BAI3) for BMI in Indians. Our study decodes key genomic loci underlying obesity phenotype in Indians that may serve as prospective drug targets in future.


Assuntos
Estudo de Associação Genômica Ampla , Fatores de Transcrição Kruppel-Like/genética , Obesidade/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Povo Asiático/genética , Índice de Massa Corporal , Metilação de DNA , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Indígenas Norte-Americanos/genética , Masculino , Obesidade/patologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Adulto Jovem
8.
Indian J Med Res ; 151(1): 47-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134014

RESUMO

Background & objectives: Obesity-mediated chronic inflammatory state is primarily governed by lifestyle and food habits in adolescents and marked by alterations in the level of various inflammatory markers. This cross-sectional study was aimed to compare the inflammatory status of healthy Indian adolescents vis-à-vis their obesity profile. The inflammatory state of urban adolescents attending private and government-funded schools, and the relationship between inflammatory marker levels and anthropometric indices in the study participants from both groups were examined. Methods: A total of 4438 study participants (10-17 yr) were chosen from various schools of Delhi, India, and their anthropometric parameters were measured. Plasma adipocytokines (adiponectin, leptin and resistin) of the study participants were measured by enzyme-linked immunosorbent assay, and plasma C-reactive protein (CRP) levels were assayed by a biochemical analyzer. Metabolic syndrome-related risk factors such as waist circumference, hip circumference (HC), fasting glucose, fasting insulin, Homeostatic Model Assessment of Insulin Resistance, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol and triglycerides of normal-weight adolescents were also evaluated. Results: The level of leptin and CRP increased with increasing adiposity, whereas adiponectin levels were found to be negatively related to obesity. All plasma cytokine levels (adiponectin, leptin and resistin) were significantly elevated in female than male adolescents. Age-based classification revealed a distinct trend of variability in the levels of all the inflammatory markers among adolescents of varying age groups. Significant differences were observed between private and government schoolgoing adolescents in terms of anthropometric and inflammatory parameters, with higher adiposity indices in the former group. The relationship of plasma adipokine and CRP levels with various adiposity indices was found to be distinctly different between private and government schoolgoing students. Interpretation & conclusions: Inflammatory markers were significantly elevated in overweight/obese adolescents. The socio-economic condition of urban Indian schoolgoing adolescents reflecting lifestyle transition has profound effects on their adiposity indices and inflammatory states. Longitudinal studies in different regions of the country need to be done to further confirm the findings.


Assuntos
Biomarcadores/sangue , Inflamação/sangue , Obesidade/sangue , Obesidade Infantil/sangue , Adiponectina/sangue , Adolescente , Proteína C-Reativa/metabolismo , Criança , Comportamento Alimentar , Feminino , Humanos , Índia/epidemiologia , Leptina/sangue , Estilo de Vida , Masculino , Obesidade Infantil/epidemiologia , Obesidade Infantil/patologia , Resistina/sangue , Fatores de Risco
9.
J Hum Genet ; 64(6): 573-587, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30911093

RESUMO

Lipids foster energy production and their altered levels have been coupled with metabolic ailments. Indians feature high prevalence of metabolic diseases, yet uncharacterized for genes regulating lipid homeostasis. We performed first GWAS for quantitative lipids (total cholesterol, LDL, HDL, and triglycerides) exclusively in 5271 Indians. Further to corroborate our genetic findings, we investigated DNA methylation marks in peripheral blood in Indians at the identified loci (N = 233) and retrieved gene regulatory features from public domains. Recurrent GWAS loci-CELSR2, CETP, LPL, ZNF259, and BUD13 cropped up as lead signals in Indians, reflecting their universal applicability. Besides established variants, we found certain unreported variants at sub-genome-wide level-QKI, REEP3, TMCC2, FAM129C, FAM241B, and LOC100506207. These variants though failed to attain GWAS significance in Indians, but largely turned out to be active CpG sites in human subcutaneous adipose tissue and showed robust association to two or more lipid traits. Of which, QKI variants showed significant association to all four lipid traits and their designated region was observed to be a key gene regulatory segment denoting active transcription particularly in human subcutaneous adipose tissue. Both established and novel loci were observed to be significantly associated with altered DNA methylation in Indians for specific CpGs that resided in key regulatory elements. Further, gene-based association analysis pinpointed novel GWAS loci-LINC01340 and IQCJ-SCHIP1 for TC; IFT27, IFT88, and LINC02141 for HDL; and TEX26 for TG. Present study ascertains universality of selected known genes and also identifies certain novel loci for lipids in Indians by integrating data from various levels of gene regulation.


Assuntos
Colesterol/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Adulto , Povo Asiático/genética , Colesterol/sangue , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Feminino , Humanos , Índia/epidemiologia , Lipídeos/sangue , Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Gordura Subcutânea/crescimento & desenvolvimento , Gordura Subcutânea/patologia , Triglicerídeos/sangue , Triglicerídeos/genética
10.
Hum Mol Genet ; 25(10): 2070-2081, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26911676

RESUMO

To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci.


Assuntos
Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Negro ou Afro-Americano/genética , Alelos , Povo Asiático/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Canal de Potássio KCNQ1/genética , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA/genética , Elementos Reguladores de Transcrição/genética , População Branca/genética , tRNA Metiltransferases/genética
11.
Mol Genet Genomics ; 292(3): 655-662, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28271161

RESUMO

Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.


Assuntos
Mapeamento Cromossômico , Ilhas de CpG/genética , Metilação de DNA/genética , DNA/análise , Etnicidade/genética , Adulto , Análise por Conglomerados , DNA/metabolismo , Epigênese Genética , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Fenótipo
13.
Expert Rev Endocrinol Metab ; : 1-16, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869356

RESUMO

INTRODUCTION: Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED: Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION: With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.

14.
J Hum Genet ; 58(1): 27-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23151679

RESUMO

Common variants near melanocortin 4 receptor (MC4R) gene are shown to be associated with adiposity but have varied effects in different age groups. Among Indians, studies have shown association of these variants with obesity in adults, but their association in children is yet to be confirmed. We evaluated association of rs17782313 and rs12970134 near MC4R with adiposity and related traits in Indians including 1362 children and 4077 adults (consisting of 2049 diabetic and 2028 nondiabetic adult subjects). Both variants rs17782313 and rs12970134 showed strong association with adiposity measures (weight, body mass index and waist circumference) in children (P-range 7.6 × 10(-5)-3.8 × 10(-12)) and nominal association in nondiabetic adults (P-range 0.05-0.003). Effect sizes on adiposity measures in children (ß range 0.22-0.26 Z-score) were ~3-fold higher compared with adults (ß range 0.06-0.08). The minor alleles of both variants showed borderline association (P-range 0.08-0.04) with risk of type 2 diabetes in adults. Meta-analysis of rs12970134 in >12 000 Indian adults corroborated its association with adiposity (P≤2.2 × 10(-9)), homeostasis model assessment-estimated insulin resistance (P=4.0 × 10(-5)) and type 2 diabetes (P=0.003) with only moderate heterogeneity, suggesting similar effect on adult Indians residing in different geographical regions. In conclusion, the study demonstrates association of variants near MC4R with obesity and related traits in Indian children and adults, with higher impact during childhood.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Variação Genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , População Branca/genética , Adiposidade/genética , Adolescente , Adulto , Alelos , Peso Corporal , Criança , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Predisposição Genética para Doença , Humanos , Índia , Resistência à Insulina/genética , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/fisiopatologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Circunferência da Cintura
15.
Hum Mutat ; 33(7): 1133-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22461382

RESUMO

Whole genome sequencing of personal genomes has revealed a large repertoire of genomic variations and has provided a rich template for identification of common and rare variants in genomes in addition to understanding the genetic basis of diseases. The widespread application of personal genome sequencing in clinical settings for predictive and preventive medicine has been limited due to the lack of comprehensive computational analysis pipelines. We have used next-generation sequencing technology to sequence the whole genome of a self-declared healthy male of Indian origin. We have generated around 28X of the reference human genome with over 99% coverage. Analysis revealed over 3 million single nucleotide variations and about 490,000 small insertion-deletion events including several novel variants. Using this dataset as a template, we designed a comprehensive computational analysis pipeline for the systematic analysis and annotation of functionally relevant variants in the genome. This study follows a systematic and intuitive data analysis workflow to annotate genome variations and its potential functional effects. Moreover, we integrate predictive analysis of pharmacogenomic traits with emphasis on drugs for which pharmacogenomic testing has been recommended. This study thus provides the template for genome-scale analysis of personal genomes for personalized medicine.


Assuntos
Genoma Humano/genética , Variação Genética/genética , Humanos , Índia , Masculino , Farmacogenética
16.
J Hum Genet ; 57(3): 184-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22277902

RESUMO

Though multiple studies link chromosomal regions 1q21-q23 and 20q13 with type 2 diabetes, fine mapping of these regions is yet to confirm gene(s) explaining the linkages. These candidate regions remain unexplored in Indians, which is a high-risk population for type 2 diabetes. Hypothesizing regulatory regions to have a more important role in complex disorders, we examined association of 207 common variants in proximal promoter and untranslated regions of genes on 1q21-23 and 20q13 with type 2 diabetes in 2115 North Indians. Further, top signals were replicated in an independent group of 2085 North Indians. Variants-rs11265455-SLAMF1 (odds ratios (OR)=1.32, P=1.1 × 10(-3)), rs1062827-F11R (OR=1.36, P=1.7 × 10(-3)) and rs12565932-F11R (OR=1.35, P=1.8 × 10(-3)) were top signals for association with type 2 diabetes whereas rs1333062-ITLN1 (OR=1.28, P=3.4 × 10(-3)) showed strongest association in body mass index-stratified analysis. Replication of these four variants confirmed associations of rs11265455-SLAMF1 (OR=1.27, P=9.1 × 10(-3)) and rs1333062-ITLN1 (OR=1.25, P=1.1 × 10(-3)) with type 2 diabetes. Meta-analysis further corroborated the association of rs11265455-SLAMF1 (OR random effect=1.29, P random effect=3.9 × 10(-5)) and rs1333062-ITLN1 (OR random effect=1.19, P random effect=1.8 × 10(-4)). In conclusion, the study demonstrates that variants of SLAMF1 and ITLN1, both implicated in inflammation, are associated with type 2 diabetes in Indians.


Assuntos
Antígenos CD/genética , Cromossomos Humanos Par 1 , Citocinas/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Lectinas/genética , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Adulto , Índice de Massa Corporal , Cromossomos Humanos Par 20 , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , População Branca/genética
17.
Commun Biol ; 5(1): 329, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393509

RESUMO

South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Povo Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único
18.
Biochem Biophys Res Commun ; 412(4): 716-22, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21867677

RESUMO

Molecular epidemiology studies have used the counts of different mutational types like transitions, transversions, etc. to identify putative mutagens, with little reference to gene organization and structure-function of the translated product. Moreover, geographical variation in the mutational spectrum is not limited to the mutational types at the nucleotide level but also have a bearing at the functional level. Here, we developed a novel measure to estimate the rate of spontaneous detrimental mutations called "mutation index" for comparing the mutational spectra consisting of all single base, missense, and non-missense changes. We have analyzed 1609 mutations occurring in 38 exons in 24 populations in three diseases viz. hemophilia B (F9 gene - 420 mutations in 9 populations across 8 exons), hemophilia A (F8 gene - 650, 8 and 26, respectively) and ovarian carcinoma (TP53 gene - 539, 7 and 4, respectively). We considered exons as units of evolution instead of the entire gene and observed feeble differences among populations implying lack of a mutagen-specific effect and the possibility of mutation causing endogenous factors. In all the three genes we observed elevated rates of detrimental mutations in exons encoding regions of significance for the molecular function of the protein. We propose that this can be extended to the entire exome with implications in exon-shuffling and complex human diseases.


Assuntos
Carcinoma/genética , Fator IX/genética , Fator VIII/genética , Hemofilia A/genética , Hemofilia B/genética , Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Alelos , Éxons/genética , Fator IX/química , Fator IX/metabolismo , Fator VIII/química , Fator VIII/metabolismo , Feminino , Humanos , Mutagênese , Mutação , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
19.
BMC Med Genet ; 12: 110, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21849023

RESUMO

BACKGROUND: There has been no systematic evaluation of the association between genetic variants of type 2 receptor for TNFα (TNFR2) and type 2 diabetes, despite strong biological evidence for the role of this receptor in the pathogenesis of this complex disorder. In view of this, we performed a comprehensive association analysis of TNFRSF1B variants with type 2 diabetes in 4,200 Indo-European subjects from North India. METHODS: The initial phase evaluated association of seven SNPs viz. rs652625, rs496888, rs6697733, rs945439, rs235249, rs17883432 and rs17884213 with type 2 diabetes in 2,115 participants (1,073 type 2 diabetes patients and 1,042 control subjects). Further, we conducted replication analysis of three associated SNPs in 2,085 subjects (1,047 type 2 diabetes patients and 1,038 control subjects). RESULTS: We observed nominal association of rs945439, rs235249 and rs17884213 with type 2 diabetes (P < 0.05) in the initial phase. Haplotype CC of rs945439 and rs235249 conferred increased susceptibility for type 2 diabetes [OR = 1.19 (95%CI 1.03-1.37), P = 0.019/Pperm = 0.076] whereas, TG haplotype of rs235249 and rs17884213 provided protection against type 2 diabetes [OR = 0.83 (95%CI 0.72-0.95, P = 7.2 × 10-3/Pperm = 0.019]. We also observed suggestive association of rs496888 with plasma hsCRP levels [P = 0.042]. However, the association of rs945439, rs235249 and rs17884213 with type 2 diabetes was not replicated in the second study population. Meta-analysis of the two studies also failed to detect any association with type 2 diabetes. CONCLUSIONS: Our two-stage association analysis suggests that TNFRSF1B variants are not the determinants of genetic risk of type 2 diabetes in North Indians.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo II do Fator de Necrose Tumoral/genética , Adulto , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Índia , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Fatores de Risco , População Branca/genética
20.
J Hum Genet ; 56(10): 695-700, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21814221

RESUMO

Variants in genes involved in pancreatic ß-cell development and function are known to cause monogenic forms of type 2 diabetes and are also associated with complex form. In this study, we studied the genetic association of polymorphisms in such important genes with type 2 diabetes in the high-risk Indians. We genotyped 91 polymorphisms in 19 genes (ABCC8, HNF1A, HNF1B, HNF4A, INS, INSM1, ISL1, KCNJ11, MAFA, MNX1, NEUROD1, NEUROG3, NKX2.2, NKX6.1, PAX4, PAX6, PDX1, USF1 and WFS1) in 2025 unrelated North Indians of Indo-European ethnicity comprising of 1019 diabetic and 1006 non-diabetic subjects. HNF4A promoter P2 polymorphisms rs1884613 and rs2144908, which are in high linkage disequilibrium, showed significant association with type 2 diabetes (odds ratio (OR)=1.37 (95% confidence interval (CI) 1.19-1.57), P=9.4 × 10(-6) for rs1884613 and OR=1.37 (95%CI 1.20-1.57), P=6.0 × 10(-6) for rs2144908), as previously shown in other populations. We observed body mass index-dependent association of these variants with type 2 diabetes in normal-weight/lean subjects. Variants in USF1, ABCC8, ISL1 and KCNJ11 showed nominal association, while haplotypes in these genes were significantly associated. rs3812704 upstream of NEUROG3 significantly increased risk for type 2 diabetes in normal-weight/lean subjects (OR=1.68 (95%CI 1.25-2.24), P=4.9 × 10(-4)). Thus, pancreatic ß-cell development and function genes contribute to susceptibility to type 2 diabetes in North Indians.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Fator 4 Nuclear de Hepatócito/genética , Indígenas Norte-Americanos/genética , Células Secretoras de Insulina/citologia , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Índice de Massa Corporal , Estudos de Casos e Controles , Variação Genética , Genótipo , Haplótipos , Fator 4 Nuclear de Hepatócito/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Células Secretoras de Insulina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Obesidade , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA