Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387351

RESUMO

This study delves into the critical role of microbial ecosystems in landfills, which are pivotal for handling municipal solid waste (MSW). Within these landfills, a complex interplay of several microorganisms (aerobic/anaerobic bacteria, archaea or methanotrophs), drives the conversion of complex substrates into simplified compounds and complete mineralization into the water, inorganic salts, and gases, including biofuel methane gas. These landfills have dominant biotic and abiotic environments where various bacterial, archaeal, and fungal groups evolve and interact to decompose substrate by enabling hydrolytic, fermentative, and methanogenic processes. Each landfill consists of diverse bio-geochemical environments with complex microbial populations, ranging from deeply underground anaerobic methanogenic systems to near-surface aerobic systems. These kinds of landfill generate leachates which in turn emerged as a significant risk to the surrounding because generated leachates are rich in toxic organic/inorganic components, heavy metals, minerals, ammonia and xenobiotics. In addition to this, microbial communities in a landfill ecosystem could not be accurately identified using lab microbial-culturing methods alone because most of the landfill's microorganisms cannot grow on a culture medium. Due to these reasons, research on landfills microbiome has flourished which has been characterized by a change from a culture-dependent approach to a more sophisticated use of molecular techniques like Sanger Sequencing and Next-Generation Sequencing (NGS). These sequencing techniques have completely revolutionized the identification and analysis of these diverse microbial communities. This review underscores the significance of microbial functions in waste decomposition, gas management, and heat control in landfills. It further explores how modern sequencing technologies have transformed our approach to studying these complex ecosystems, offering deeper insights into their taxonomic composition and functionality.


Assuntos
Bacteriologia , Eliminação de Resíduos , Temperatura Alta , Ecossistema , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Gases/análise
2.
Physiol Plant ; 174(3): e13687, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35514154

RESUMO

Metalloids in plants have diverse physiological effects. From being essential to beneficial to toxic, they have significant effects on many physiological processes, influencing crop yield and quality. Aquaporins are a group of membrane channels that have several physiological substrates along with water. Metalloids have emerged as one of their important substrates and they are found to have a substantial role in regulating plant metalloid homeostasis. The present review comprehensively details the multiple isoforms of aquaporins having specificity for metalloids and being responsible for their influx, distribution or efflux. In addition, it also highlights the usage of aquaporin-mediated transport as a selection marker in toxic screens and as tracer elements for closely related metalloids. Therefore, aquaporins, with their imperative contribution to the regulation of plant growth, development and physiological processes, need more research to unravel the metalloid trafficking mechanisms and their future applications.


Assuntos
Aquaporinas , Metaloides , Aquaporinas/metabolismo , Transporte Biológico , Metaloides/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
3.
Physiol Plant ; 174(3): e13688, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35470470

RESUMO

The presence of different forms of heavy metals in the earth crust is very primitive and probably associated with the origin of plant life. However, since the beginning of human civilisation, heavy metal use and its contamination to all living systems on earth have significantly increased due to human anthropogenic activities. Heavy metals are nonbiodegradable, which directly or indirectly impact photosynthesis, antioxidant system, mineral nutrition status, phytohormones and amino acid-derived molecules. Due to the toxic behaviour of some heavy metals, the endogenous status of chemical messengers like phytohormones may get significantly influenced, leading to harmful impacts on plant growth, development and overall yield of the plants. It has been noticed that exogenous application of phytohormones, that is, abscisic acid, salicylic acid, auxins, brassinosteroids, cytokinins, ethylene and gibberellins can positively regulate the heavy metal toxicity in plants through the regulation of the ascorbate-glutathione cycle, nitrogen metabolism, proline metabolisms, transpiration rate, and cell division. Furthermore, it may also restrict the entry of heavy metals into the plant cells, which aids in the recovery of plant growth and productivity. Besides these, some defence molecules also assist the plant in dealing with heavy metal toxicity. Therefore, the present review aims to bridge the knowledge gap in this context and present outstanding discoveries related to plant life supportive processes during stressful conditions including phytohormones and heavy metal crosstalk along with suggestions for future research in this field.


Assuntos
Metais Pesados , Reguladores de Crescimento de Plantas , Biologia , Citocininas/metabolismo , Metais Pesados/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
4.
Physiol Mol Biol Plants ; 28(6): 1311-1321, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910442

RESUMO

The phenotyping of plant roots is a challenging task and poses a major lacuna in plant root research. Roots rhizospheric zone is affected by several environmental cues among which salinity, drought, heavy metal and soil pH are key players. Among biological factors, fungal, nematode and bacterial interactions with roots are vital for improving nutrient uptake efficiency in plants. The subterranean nature of a plant root and the limited number of approaches for root phenotyping offers a great challenge to the plant breeders to select a desirable root trait under different stress conditions. Identification of key root traits can provide a basic understanding for generating crop plants with enhanced ability to withstand various biotic or abiotic stresses. For instance, crops with improved soil exploration potential, phosphate uptake efficiency, water use efficiency and others. Laboratory methods such as hydroponics, rhizotron, rhizoslide and luminescence observatory for roots do not provide precise and desired root quantification attributes. Though 3D imaging by X-ray computed tomography (X-ray-CT) and magnetic resonance imaging techniques are complex, however, it provides the most applicable and practically relevant data for quantifying root system architecture traits. This review outlines the current developments in root studies including recent approaches viz. X-ray-CT, MRI, thermal infrared imaging and minirhizotron. Although root phenotyping is a laborious procedure, it offers multiple advantages by removing discrepancies and providing the actual practical significance of plant roots for breeding programs.

5.
Nutr Cancer ; 73(9): 1727-1745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32781844

RESUMO

trans-Anethole, the major bioactive component of Illicium verum Hook. commonly known as star anise exhibits various pharmacological activities including anti-inflammatory, antimicrobial, insecticidal, and antitumor. Osteosarcoma is an extremely aggressive malignant bone tumor that affects children and young adults and accounts for around 60% of all sarcomas. The study was planned to evaluate the potential of trans-Anethole against Human osteosarcoma cell line MG-63. The antiproliferative activity of trans-Anethole was assessed by MTT assay. trans-Anethole exhibited apoptotic cell death as monitored by confocal/electron microscopy and flow cytometry studies. Modulation of gene expression was studied by Western blot and RT-PCR analysis. The present study revealed that trans-Anethole inhibited osteosarcoma proliferation in a dose-dependent manner with a GI50 value of 60.25 µM and showed pro-apoptotic activity as analyzed by Annexin V-FITC/PI assay. Flow cytometric analysis revealed that trans-Anethole induced cell cycle arrest at the G0/G1 phase with the generation of reactive oxygen species and reduction in mitochondrial membrane potential (ΔΨm). Immunoblotting results showed the increased expression of caspase-9/-3, p53, and decreased expression of Bcl-xL suggesting the involvement of the p53 and mitochondrial intrinsic pathway. This work provides a rationale that trans-Anethole might be considered as a promising chemotherapeutic/nutraceutical agent for the management of osteosarcoma.Highlightstrans-Anethole inhibited cell growth and caused G0/G1 arrest in Human osteosarcoma MG-63 cell line.trans-Anethole led to the loss of mitochondrial membrane permeability along with ROS generation.trans-Anethole upregulates the expression of p53, Caspase-9/-3, and downregulate Bcl-xL expression.


Assuntos
Osteossarcoma , Derivados de Alilbenzenos , Anisóis , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Potencial da Membrana Mitocondrial , Osteossarcoma/tratamento farmacológico
6.
Physiol Plant ; 172(2): 935-962, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33686690

RESUMO

Suboptimal availability of water limits plant growth, development, and performance. Drought is one of the leading factors responsible for worldwide crop yield reduction. In the future, owing to climate changes, more agricultural land will be affected by prolonged periods of water deficit. Thus, understanding the fundamental mechanism of drought response is a major scientific concern for improvement of crop production. To combat drought stress, plants deploy varied mechanistic strategies and alter their morphological, physiochemical, and molecular attributes. This helps plant to enhance water uptake and storage, reduce water loss and avoid wilting. Induction of several transcription factors and drought responsive genes leads to synthesis of stress proteins, regulation of water channels i.e. aquaporins and production of osmolytes that are essential for maintenance of osmotic balance at the cellular level. Self- and hormone-regulated signaling pathways are often stimulated by plants after receiving drought stress signals via secondary messengers, mitogen-activated protein kinases, and stress hormones. These signaling cascades often leads to stomatal closure and reduction in transpiration rates. Reduced carbon dioxide diffusion in chloroplast, lowered efficacy of photosystems, and other metabolic constraints limits the key regulatory photosynthetic process during water deficit. The impact of these stomatal and nonstomatal limitations varies with stress intensity, superimposed stresses and plant species. A clear understanding of the drought resistance process is thus important before adopting strategies for imparting drought tolerance in plants. These management practices at present include exogenous hormone application, breeding, and genetic engineering techniques for combating the water deficit issues.


Assuntos
Fotossíntese , Água , Secas , Osmose , Plantas/genética
7.
Ecotoxicol Environ Saf ; 222: 112459, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217114

RESUMO

Nanotechnology is an avant-garde field of scientific research that revolutionizes technological advancements in the present world. It is a cutting-edge scientific approach that has undoubtedly a plethora of functions in controlling environmental pollutants for the welfare of the ecosystem. However, their unprecedented utilization and hysterical release led to a huge threat to the soil microbiome. Nanoparticles(NPs) hamper physicochemical properties of soil along with microbial metabolic activities within rhizospheric soils.Here in this review shed light on concentric aspects of NP-biosynthesis, types, toxicity mechanisms, accumulation within the ecosystem. However, the accrual of tiny NPs into the soil system has dramatically influenced rhizospheric activities in terms of soil properties and biogeochemical cycles. We have focussed on mechanistic pathways engrossed by microbes to deal with NPs.Also, we have elaborated the fate and behavior of NPs within soils. Besides, a piece of very scarce information on NPs-toxicity towards environment and rhizosphere communities is available. Therefore, the present review highlights ecological perspectives of nanotechnology and solutions to such implications. We have comprehend certain strategies such as avant-garde engineering methods, sustainable procedures for NP synthesis along with vatious regulatory actions to manage NP within environment. Moreover, we have devised risk management sustainable and novel strategies to utilize it in a rationalized and integrated manner. With this background, we can develop a comprehensive plan about NPs with novel insights to understand the resistance and toxicity mechanisms of NPs towards microbes. Henceforth, the orientation towards these issues would enhance the understanding of researchers for proper recommendation and promotion of nanotechnology in an optimized and sustainable manner.


Assuntos
Nanopartículas Metálicas , Microbiota , Nanopartículas , Nanopartículas/toxicidade , Rizosfera , Solo , Microbiologia do Solo
8.
J Antimicrob Chemother ; 75(3): 600-608, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840170

RESUMO

BACKGROUND: Levonadifloxacin is a novel antibiotic belonging to the benzoquinolizine subclass of fluoroquinolones with potent activity against MRSA and quinolone-resistant Staphylococcus aureus. IV levonadifloxacin and its oral prodrug alalevonadifloxacin have recently been approved in India for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) including diabetic foot infections. OBJECTIVES: To investigate the in vitro activity of levonadifloxacin against contemporary clinical isolates collected from multiple tertiary care hospitals across India in the Antimicrobial Susceptibility Profiling of Indian Resistotypes (ASPIRE) surveillance study. METHODS: A total of 1376 clinical isolates, consisting of staphylococci (n = 677), streptococci (n = 178), Enterobacterales (n = 320), Pseudomonas aeruginosa (n = 140) and Acinetobacter baumannii (n = 61), collected (2016-18) from 16 tertiary hospitals located across 12 states in India, were included in the study. The MICs of levonadifloxacin and comparator antibiotics were determined using the reference agar dilution method and broth microdilution method. RESULTS: Levonadifloxacin exhibited potent activity against MSSA (MIC50/90: 0.5/1 mg/L), MRSA (MIC50/90: 0.5/1 mg/L) and levofloxacin-resistant S. aureus (MIC50/90: 1/1 mg/L) isolates. Similarly, potent activity of levonadifloxacin was also observed against CoNS including MDR isolates (MIC50/90: 1/2 mg/L). Against Streptococcus pneumoniae, levonadifloxacin (MIC50/90: 0.5/0.5 mg/L) showed superior activity compared with levofloxacin (MIC50/90: 1/2 mg/L). Among levofloxacin-susceptible Enterobacterales, 80.6% of isolates were inhibited at ≤2 mg/L levonadifloxacin. CONCLUSIONS: Levonadifloxacin displayed potent activity against contemporary MRSA and fluoroquinolone-resistant staphylococcal isolates, thus offering a valuable IV as well as an oral therapeutic option for the treatment of ABSSSIs. Furthermore, levonadifloxacin exhibited a broad-spectrum activity profile as evident from its activity against streptococci and levofloxacin-susceptible Gram-negative isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Quinolonas , Antibacterianos/farmacologia , Índia , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Quinolizinas
9.
Physiol Plant ; 168(2): 318-344, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31240720

RESUMO

Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.


Assuntos
Metais Pesados/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fenômenos Fisiológicos Vegetais , Oxirredução , Fotossíntese , Plantas , Transdução de Sinais
10.
Rev Environ Contam Toxicol ; 249: 153-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30900073

RESUMO

Lead (Pb) is an extremely toxic metal for all living forms including plants. It enters plants through roots from soil or soil solution. It is considered as one of the most eminent examples of anthropogenic environmental pollutant added in environment through mining and smelting of lead ores, coal burning, waste from battery industries, leaded paints, metal plating, and automobile exhaust. Uptake of Pb in plants is a nonselective process and is driven by H+/ATPases. Translocation of Pb metal ions occurs by apoplastic movement resulting in deposition of metal ions in the endodermis and is further transported by symplastic movement. Plants exposed to high concentration of Pb show toxic symptoms due to the overproduction of reactive oxygen species (ROS) through Fenton-Haber-Weiss reaction. ROS include superoxide anion, hydroxyl radical, and hydrogen peroxide, which reach to macro- and micro-cellular levels in the plant cells and cause oxidative damage. Plant growth and plethora of biochemical and physiological attributes including plant growth, water status, photosynthetic efficiency, antioxidative defense system, phenolic compounds, metal chelators, osmolytes, and redox status are adversely influenced by Pb toxicity. Plants respond to toxic levels of Pb in varied ways such as restricted uptake of metal, chelation of metal ions to the root endodermis, enhancement in activity of antioxidative defense, alteration in metal transporters expression, and involvement of plant growth regulators.


Assuntos
Chumbo/toxicidade , Fenômenos Fisiológicos Vegetais , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes , Espécies Reativas de Oxigênio
11.
Int J Environ Health Res ; 30(2): 146-159, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784304

RESUMO

The present work studied the pH, organic carbon, phosphorus (P), calcium (Ca), magnesium (Mg), and heavy metals Cu, Cr, Co and Pb in roadside agricultural soils of Jalandhar environs of Punjab, India. A total of 120 samples in triplicates were collected from different sites for assessment of heavy metal pollution. The mean values of Cu, Cr, Co and Pb were found below the permissible limits of Indian and Swedish soil limits. Principal component analysis (PCA) showed that heavy metals have different sources of origin. The results of contamination factor (CF), geoaccumulation index (Igeo), degree of contamination (Cd) and potential ecological risk index (RI) showed low contamination and ecological risks of heavy metals in roadside agricultural soils, respectively. The maps of spatial analysis indicated that northern region of the study area is more polluted.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Poluição Ambiental/análise , Índia , Análise de Componente Principal , Análise Espacial
12.
Physiol Mol Biol Plants ; 26(12): 2487-2502, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424160

RESUMO

The present study aims at the amelioration of chromium Cr(VI) toxicity using ethylenediaminetetraacetic acid (EDTA), and to understand the interactive effects of Cr(VI) and EDTA with respect to seedling growth, lipid peroxidation as assessed from malondialdehyde, pigments and antioxidative enzymes in Hordeum vulgare L. Following multivariate statistical techniques were used to study binary interactions between Cr(VI) and EDTA: 2-way ANOVA, Tukey's multiple comparison test, multiple regression with interaction between Cr an EDTA, beta coefficients, path analysis and non-metric multidimensional scaling (NMDS). The present study revealed that the EDTA decreases lipid peroxidation induced by Cr(VI) and ameliorates the antioxidative defence system and pigment constitution of seedlings grown in Cr(VI) containing media. EDTA-Cr(VI) interaction decreased the Cr content in the seedlings which may be attributed to the chelating effect of EDTA. The root and shoot bioconcentration factors, the ratio of Cr content in the plant to that in the medium, were decreased by addition of EDTA to Cr(VI), indicating a decrease in the uptake of Cr by the seedlings from the medium. NMDS revealed that the ranking of the studied parameters is maintained by ordination on two axes. The study established that EDTA is antagonistic to Cr(VI) induced biochemical toxicity, and improves the antioxidative defence system, increases the chlorophyll content, and decreases Cr uptake in barley seedlings.

13.
Ecotoxicol Environ Saf ; 182: 109436, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31325808

RESUMO

Copper (Cu) is an essential yet toxic metal, which holds the ability to induce production of reactive oxygen species (ROS) in living cells resulting in severe abiotic stress. Therefore, the aim of our current study was to investigate the effects of extrinsically added ascorbic acid (AA) on oxidative stress indicators and redox homoeostasis remediators in 7-day-old seedlings and 60-day-old plants of Brassica juncea L. (hyper-accumulator species) subjected to Cu (II) stress. Our findings showed that seed germination ballooned by 55.4% in Cu (II) stressed seedlings upon addition of 50 mg l-1 AA. Copper content accelerated in stressed seedlings and plants; however, a negative interaction was seen upon addition of AA. Both seedlings and plants exposed to Cu (II) accumulated free radicals such as H2O2 and superoxide anion, however, the addition of AA in the growth media decreased H2O2 and superoxide anion generation indicating ROS detoxification. Confocal microscopy also revealed improved cell viability and reduced H2O2 content because of enhanced antioxidant activity upon addition of AA as a protective chelate. Antioxidants such as ascorbate, flavonoids and glutathione rose significantly in Cu (II) stressed seedlings and plants in the presence of AA. Protein content increased by 51.3% and 47.5% in seedlings and plants growing in a binary combination of 100 mg l-1 Cu and AA (75 mg l-1 and 25 mg l-1), respectively. Sharp peaks for stress indicator amino acids such as cysteine and proline were seen in spectral analysis of B. juncea seedlings exposed to Cu (II). Protein thiols increased in plants grown in various binary doses Cu (II) and AA. This study provides sufficient evidence regarding the protective role of ascorbic acid (AA) against ROS and its suggested use as a soil amendment against Cu (II) toxicity in B. juncea.


Assuntos
Ácido Ascórbico/metabolismo , Cobre/toxicidade , Mostardeira/fisiologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Mostardeira/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/fisiologia , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Superóxido Dismutase/metabolismo
14.
Ecotoxicol Environ Saf ; 179: 50-61, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026750

RESUMO

In the current investigation, we studied role of castasterone (CS), (a bioactive brassinosteroid) in Brassica juncea grown under imidacloprid (IMI) stress. We observed that CS-seed treatment resulted in the recovery of seedling growth under IMI toxicity. Seed treatment with CS, significantly enhanced the contents of pigments like chlorophylls, carotenoids, anthocyanins and xanthophylls under stress. Oxidative stress generated by the production of reactive oxygen species (ROS) like hydrogen peroxide and superoxide anion, was reduced after CS treatment under IMI toxicity. Antioxidative defense system got activated after CS-seed treatment, resulting in the increased activities of enzymes. Moreover, CS-seed treatment under IMI stress also stimulated the biosynthesis of organic acids of Krebs cycle (citrate, succinate, fumarate and malate) and phenolics. We also noticed that CS is also involved in the regulation of the gene expression of some key enzymes involved in pigment metabolism (CHLASE, PSY, CHS), carbon fixation (RUBISCO), Krebs cycle (CS, SUCLG1, SDH, FH), ROS generation (RBO), antioxidative enzymes (SOD, CAT, POD, DHAR, GR, GST), phenolic biosynthesis (PAL) and pesticide detoxification system (CXE, P450, NADH). This modulated gene expression after CS-treatment activated the insecticide detoxification, leading to the reduction of IMI residues. Data analysis using multivariate statistical technique i.e. multiple linear regression, also supported the fact that CS can efficiently reduce IMI induced phytotoxicity in B. juncea.


Assuntos
Brassinosteroides/farmacologia , Colestanóis/farmacologia , Inseticidas/toxicidade , Mostardeira/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Inativação Metabólica , Mostardeira/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo
15.
Ecotoxicol Environ Saf ; 174: 283-294, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844668

RESUMO

The phytohormone jasmonic acid (JA) plays an imperative role in plants by modulating the activity of their antioxidative defense system under stress conditions. Here, we explored the role of JA-induced alterations in the growth and transcript levels of antioxidative enzymes in tomato seedlings exposed to different Pb concentrations (0.25, 0.50, and 0.75 mM). Pb treatment caused a dose-dependent reduction in their root and shoot lengths. Treatment of 0.75 mM Pb showed an increase in the contents of malondialdehyde (MDA), superoxide anion (O2•-), and hydrogen peroxide (H2O2) as compared to the untreated seedlings. Pb uptake was enhanced with an increase in Pb concentration. The seeds primed with JA showed reduction in Pb uptake and improvement in growth under Pb toxicity. The seedlings treated with both JA (100 nM) and Pb (0.75 mM) showed a decline in the levels of MDA, O2•-, and H2O2 as compared to the seedlings treated with 0.75 mM Pb alone. These results suggested that JA (100 nM) mitigated the oxidative damage by lowering the expression of the RBO and P-type ATPase transporter genes and by modulating antioxidative defense system activity. The biochemical and molecular analyses showed that JA plays a crucial role in plant defense responses against Pb stress.


Assuntos
Ciclopentanos/farmacologia , Chumbo/toxicidade , Oxilipinas/farmacologia , ATPases do Tipo-P/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Solanum lycopersicum/enzimologia , Solanum lycopersicum/imunologia
16.
Molecules ; 24(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277395

RESUMO

Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.


Assuntos
Plantas/metabolismo , Polifenóis/metabolismo , Propanóis/metabolismo , Estresse Fisiológico , Vias Biossintéticas , Polifenóis/biossíntese , Salinidade
17.
Ecotoxicol Environ Saf ; 147: 382-393, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28881317

RESUMO

The study focuses on potential of combined pre-soaking treatment of 24-Epibrassinolide (EBL) and Salicylic acid (SA) in alleviating Pb phytotoxicity in Brassica juncea L. plants. The seeds after treatment with combination of both the hormones were sown in mixture of soil, sand and manure (3:1:1) and were exposed to Pb concentrations (0.25mM, 0.50mM and 0.75mM). After 30 days of growth, the plants were harvested and processed, for quantification of various metabolites. It was found that pre-sowing of seeds in combination of EBL and SA, mitigated the adverse effects of metal stress by modulating antioxidative defense response and enhanced osmolyte contents. Dry matter content and heavy metal tolerance index were enhanced in response to co-application of EBL and SA. The levels of superoxide anions, hydrogen peroxide and malondialdehyde were lowered by the combined treatment of hormones. Enhancement in activities of guaiacol peroxidase, catalase, glutathione reductase and glutathione-s-transferase were recorded. Contents of glutathione, tocopherol and ascorbic acid were also enhanced in response to co-application of both hormones. Expression of POD, CAT, GR and GST1 genes were up-regulated whereas SOD gene was observed to be down-regulated. Contents of proline, trehalose and glycine betaine were also reported to be elevated as a result of treatment with EBL+SA. The results suggest that co-application of EBL+SA may play an imperative role in improving the antioxidative defense expression of B. juncea plants to combat the oxidative stress generated by Pb toxicity.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Mostardeira/efeitos dos fármacos , Ácido Salicílico/farmacologia , Esteroides Heterocíclicos/farmacologia , Poluentes Ambientais/metabolismo , Expressão Gênica/efeitos dos fármacos , Hidroponia , Chumbo/metabolismo , Mostardeira/enzimologia , Mostardeira/genética , Osmorregulação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
18.
Ecotoxicol Environ Saf ; 147: 725-734, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28942275

RESUMO

The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H2O2) and superoxide anion radical (O2-) were chosen as stress biomarker and higher levels of H2O2 (88.89%) and O2- (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism.


Assuntos
Antioxidantes/metabolismo , Colestanóis/farmacologia , Cobre/toxicidade , Mostardeira/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Aminoácidos/metabolismo , Cobre/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Mostardeira/enzimologia , Mostardeira/genética , Poluentes do Solo/metabolismo
19.
Molecules ; 23(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177614

RESUMO

In this era of urbanization and environmental pollution, antioxidants and antimutagens derived from plants are promising safeguards for human health. In the current investigation, we analyzed the antioxidant and antimutagenic effects of the hexane, chloroform, and ethyl acetate fractions of Rhododendron arboreum Sm. leaves and determined their chemical composition. The different fractions inhibited lipid peroxidation, repressed the production of nitric oxide radicals, and prevented deoxyribose degradation. The antimutagenic activity of the leaf fractions was analyzed against 4-nitro-O-phenylenediamine, sodium azide and 2-aminofluorene mutagens in two test strains (TA-98 and TA-100) of Salmonella typhimurium. The experiment was conducted using pre- and co-incubation modes. The best results were obtained in the pre-incubation mode, and against indirect acting mutagen. The presence of a number of bioactive constituents was confirmed in the different fractions by GC-MS analysis. The study reveals the strong antioxidant and antimutagenic activity of R. arboreum leaves. We propose that those activities of R. arboreum might correspond to the combined effect of the phytochemicals identified by GC-MS analysis. To the best of our knowledge, this is the first report on the antimutagenic activity of R. arboreum leaves.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Rhododendron/química , Acetatos/química , Acetatos/farmacologia , Antimutagênicos/química , Antioxidantes/química , Clorofórmio/química , Clorofórmio/farmacologia , Desoxirribose/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hexanos/química , Hexanos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Folhas de Planta/química
20.
BMC Plant Biol ; 17(1): 56, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245791

RESUMO

BACKGROUND: Pesticides cause oxidative stress to plants and their residues persist in plant parts, which are a major concern for the environment as well as human health. Brassinosteroids (BRs) are known to protect plants from abiotic stress conditions including pesticide toxicity. The present study demonstrated the effects of seed-soaking with 24-epibrassinolide (EBR) on physiological responses of 10-day old Brassica juncea seedlings grown under imidacloprid (IMI) toxicity. RESULTS: In the seedlings raised from EBR-treated seeds and grown under IMI toxicity, the contents of hydrogen peroxide (H2O2) and superoxide anion (O.2-) were decreased, accompanied by enhanced activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST), guaiacol peroxidase (POD) and the content of glutathione (GSH). As compared to controls, the gene expressions of SOD, CAT, GR, POD, NADH (NADH-ubiquinone oxidoreductase), CXE (carboxylesterase), GSH-S (glutathione synthase), GSH-T (glutathione transporter-1), P450 (cytochrome P450 monooxygenase) and GST1-3,5-6 were enhanced in the seedlings raised from EBR-treated seeds and grown in IMI supplemented substratum. However, expression of RBO (respiratory burst oxidase, the gene responsible for H2O2 production) was decreased in seedlings raised from EBR treated seeds and grown under IMI toxicity. Further, the EBR seed treatment decreased IMI residues by more than 38% in B. juncea seedlings. CONCLUSIONS: The present study revealed that EBR seed soaking can efficiently reduce oxidative stress and IMI residues by modulating the gene expression of B. juncea under IMI stress. In conclusion, exogenous EBR application can protect plants from pesticide phytotoxicity.


Assuntos
Brassinosteroides/farmacologia , Imidazóis/antagonistas & inibidores , Inseticidas/antagonistas & inibidores , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Nitrocompostos/antagonistas & inibidores , Reguladores de Crescimento de Plantas/farmacologia , Esteroides Heterocíclicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Imidazóis/toxicidade , Inativação Metabólica/genética , Inseticidas/toxicidade , Mostardeira/enzimologia , Neonicotinoides , Nitrocompostos/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA