Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiographics ; 40(1): 122-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917664

RESUMO

With phase-contrast imaging, the MRI signal is used to visualize and quantify velocity. This imaging modality relies on phase data, which are intrinsic to all MRI signals. With use of bipolar gradients, degrees of phase shift are encoded and in turn correlated directly with the velocity of protons. The acquisition of diagnostic-quality images requires selection of the correct imaging plane to ensure accurate measurement and selection of the encoding velocity and thus prevent aliasing and achieve the highest signal-to-noise ratio. Multiple applications of phase-contrast imaging are actively used in clinical practice. One of the most common clinical uses is in cardiac valvular flow imaging, at which the data are used to assess the severity of valvular disease and quantify the shunt fraction. In neurologic imaging, phase-contrast imaging can be used to measure the flow of cerebrospinal fluid. This measurement can aid in the diagnosis and direct management of normal pressure hydrocephalus or be used to evaluate the severity of stenosis, such as that in Chiari I malformations. At vascular analysis, phase-contrast imaging can be used to visualize arterial and venous flow, and this application is used most commonly in the brain. Three-dimensional imaging can yield highly detailed flow data in a technique referred to as four-dimensional flow. A more recently identified application is in MR elastography. Shear waves created by using an impulse device can be velocity encoded, and this velocity is directly proportional to the stiffness of the organ, or the shear modulus. This imaging modality is most commonly used in the liver for evaluation of cirrhosis and steatosis, although research on the assessment of other organs is being performed. Phase-contrast imaging is an important tool in the arsenal of MRI examinations and has many applications. Proper use of phase-contrast imaging requires an understanding of the many practical and technical factors and unique physics principles underlying the technique.©RSNA, 2020.


Assuntos
Imageamento por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo , Encefalopatias/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Humanos , Imageamento Tridimensional , Angiografia por Ressonância Magnética/métodos , Física , Razão Sinal-Ruído
2.
Radiographics ; 40(1): 200-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917652

RESUMO

Neurodegenerative diseases are a devastating group of disorders that can be difficult to accurately diagnose. Although these disorders are difficult to manage owing to relatively limited treatment options, an early and correct diagnosis can help with managing symptoms and coping with the later stages of these disease processes. Both anatomic structural imaging and physiologic molecular imaging have evolved to a state in which these neurodegenerative processes can be identified relatively early with high accuracy. To determine the underlying disease, the radiologist should understand the different distributions and pathophysiologic processes involved. High-spatial-resolution MRI allows detection of subtle morphologic changes, as well as potential complications and alternate diagnoses, while molecular imaging allows visualization of altered function or abnormal increased or decreased concentration of disease-specific markers. These methodologies are complementary. Appropriate workup and interpretation of diagnostic studies require an integrated, multimodality, multidisciplinary approach. This article reviews the protocols and findings at MRI and nuclear medicine imaging, including with the use of flurodeoxyglucose, amyloid tracers, and dopaminergic transporter imaging (ioflupane). The pathophysiology of some of the major neurodegenerative processes and their clinical presentations are also reviewed; this information is critical to understand how these imaging modalities work, and it aids in the integration of clinical data to help synthesize a final diagnosis. Radiologists and nuclear medicine physicians aiming to include the evaluation of neurodegenerative diseases in their practice should be aware of and familiar with the multiple imaging modalities available and how using these modalities is essential in the multidisciplinary management of patients with neurodegenerative diseases.©RSNA, 2020.


Assuntos
Demência/diagnóstico por imagem , Imagem Molecular/métodos , Imagem Multimodal/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Neuroimagem/métodos , Demência/patologia , Humanos , Doenças Neurodegenerativas/patologia
3.
Am J Pathol ; 170(1): 416-26, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200212

RESUMO

We explored the role of the classic complement pathway in atherogenesis by intercrossing C1q-deficient mice (C1qa-/-) with low-density lipoprotein receptor knockout mice (Ldlr-/-). Mice were fed a normal rodent diet until 22 weeks of age. Aortic root lesions were threefold larger in C1qa-/-/Ldlr-/- mice compared with Ldlr-/- mice (3.72 +/- 1.0% aortic root versus 1.1 +/- 0.4%; mean +/- SEM, P < 0.001). Furthermore, the cellular composition of lesions in C1qa-/-/Ldlr-/- was more complex, with an increase in vascular smooth muscle cells. The greater aortic root lesion size in C1qa-/-/Ldlr-/- mice occurred despite a significant reduction in C5b-9 deposition per lesion unit area, suggesting the critical importance of proximal pathway activity. Apoptotic cells were readily detectable by cleaved caspase-3 staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and electron microscopy in C1qa-/-/Ldlr-/-, whereas apoptotic cells were not detected in Ldlr-/- mice. This is the first direct demonstration of a role for the classic complement pathway in atherogenesis. The greater lesion size in C1qa-/-/Ldlr-/- mice is consistent with the emerging homeostatic role for C1q in the disposal of dying cells. This study suggests the importance of effective apoptotic cell removal for containing the size and complexity of early lesions in atherosclerosis.


Assuntos
Aterosclerose/etiologia , Complemento C1q/fisiologia , Via Clássica do Complemento , Receptores de LDL/deficiência , Animais , Apoptose/fisiologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Camundongos Knockout , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA