Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nanotechnology ; 35(30)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38631306

RESUMO

Electronic transport in monolayer MoS2is significantly constrained by several extrinsic factors despite showing good prospects as a transistor channel material. Our paper aims to unveil the underlying mechanisms of the electrical and magneto-transport in monolayer MoS2. In order to quantitatively interpret the magneto-transport behavior of monolayer MoS2on different substrate materials, identify the underlying bottlenecks, and provide guidelines for subsequent improvements, we present a deep analysis of the magneto-transport properties in the diffusive limit. Our calculations are performed on suspended monolayer MoS2and MoS2on different substrate materials taking into account remote impurity and the intrinsic and extrinsic phonon scattering mechanisms. We calculate the crucial transport parameters such as the Hall mobility, the conductivity tensor elements, the Hall factor, and the magnetoresistance over a wide range of temperatures, carrier concentrations, and magnetic fields. The Hall factor being a key quantity for calculating the carrier concentration and drift mobility, we show that for suspended monolayer MoS2at room temperature, the Hall factor value is around 1.43 for magnetic fields ranging from 0.001 to 1 Tesla, which deviates significantly from the usual value of unity. In contrast, the Hall factor for various substrates approaches the ideal value of unity and remains stable in response to the magnetic field and temperature. We also show that the MoS2over an Al2O3substrate is a good choice for the Hall effect detector. Moreover, the magnetoresistance increases with an increase in magnetic field strength for smaller magnetic fields before reaching saturation at higher magnetic fields. The presented theoretical model quantitatively captures the scaling of mobility and various magnetoresistance coefficients with temperature, carrier densities, and magnetic fields.

2.
Phys Chem Chem Phys ; 26(27): 18907-18917, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949654

RESUMO

MAX phase is a family of ceramic compounds, typically known for their metallic properties. However, we show here that some of them may be narrow bandgap semiconductors. Using a series of first-principles calculations, we have investigated the electronic structures of 861 dynamically stable MAX phases. Notably, Sc2SC, Y2SC, Y2SeC, Sc3AuC2, and Y3AuC2 have been identified as semiconductors with band gaps ranging from 0.2 to 0.5 eV. Furthermore, we have assessed the thermodynamic stability of these systems by generating ternary phase diagrams utilizing evolutionary algorithm techniques. Their dynamic stabilities are confirmed by phonon calculations. Additionally, we have explored the potential thermoelectric efficiencies of these materials by combining Boltzmann transport theory with first-principles calculations. The relaxation times are estimated using scattering theory. The zT coefficients for the aforementioned systems fall within the range of 0.5 to 2.5 at temperatures spanning from 300 to 700 K, indicating their suitability for high-temperature thermoelectric applications.

3.
Phys Chem Chem Phys ; 25(6): 5203-5210, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723101

RESUMO

Finding a suitable material for hydrogen storage under ambient atmospheric conditions is challenging for material scientists and chemists. In this work, using a first principles based cluster expansion approach, the hydrogen storage capacity of the Ti2AC (A = Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn) MAX phase and its alloys was studied. We found that hydrogen is energetically stable in Ti-A layers in which the tetrahedral site consisting of one A atom and three Ti atoms is energetically more favorable for hydrogen adsorption than other sites in the Ti-A layer. Ti2CuC has the highest hydrogen adsorption energy than other Ti2AC phases. We find that the 83.33% Cu doped Ti2AlxCu1-xC alloy structure is both energetically and dynamically stable and can store 3.66 wt% hydrogen under ambient atmospheric conditions, which is higher than that stored by both Ti2AlC and Ti2CuC phases. These findings indicate that the hydrogen capacity of the MAX phase can be significantly improved by doping an appropriate atom species.

4.
Phys Chem Chem Phys ; 23(6): 3802-3809, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533337

RESUMO

Chemisorption on ferromagnetic and non-magnetic surfaces is discussed within the Newns-Anderson-Grimley model along with the Stoner model of ferromagnetism. In the case of ferromagnetic surfaces, the adsorption energy is formulated in terms of the change in surface magnetic moments. Using such a formulation, we address the issue of how an adsorbate's binding strength depends on the magnetic moments of the surface and how the adsorption process reduces/enhances the magnetic moments of the surface. Our results indicate a possible scaling relationship of adsorption energy in terms of surface magnetic moments. In the case of non-magnetic surfaces, we formulate a modified Stoner criterion and discuss the condition for the appearance of magnetism due to chemisorption on an otherwise non-magnetic surface.

5.
J Chem Phys ; 154(10): 104111, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722030

RESUMO

We formulate Wannier orbital overlap population and Wannier orbital Hamilton population to describe the contribution of different orbitals to electron distribution and their interactions. These methods, which are analogous to the well-known crystal orbital overlap population and crystal orbital Hamilton population, provide insight into the distribution of electrons at various atom centers and their contributions to bonding. We apply this formalism in the context of a plane-wave density functional theory calculation. This method provides a means to connect the non-local plane-wave basis to a localized basis by projecting the wave functions from a plane-wave density functional theory calculation to a localized Wannier orbital basis. The main advantage of this formulation is that the spilling factor is strictly zero for insulators and can systematically be made small for metals. We use our proposed method to study and obtain bonding and electron localization insights in five different materials.

6.
Phys Chem Chem Phys ; 22(32): 17960-17968, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32747888

RESUMO

The scaling relationships between the adsorption energies of different reaction intermediates have a tremendous effect in the field of surface science, particularly in predicting new catalytic materials. In the last few decades, these scaling laws have been extensively studied and interpreted by a number of research groups which makes them almost universally accepted. In this work, we report the breakdown of the standard scaling law in magnetic bimetallic transition metal (TM) surfaces for hydrogenated species of oxygen (O), carbon (C), and nitrogen (N), where the adsorption energies are estimated using density functional theory (DFT). We propose that the scaling relationships do not necessarily rely solely on the adsorbates, they can also be strongly dependent on the surface properties. For magnetic bimetallic TM surfaces, the magnetic moment plays a vital role in the estimation of adsorption energy, and therefore towards the linear scaling relation.

7.
J Phys Chem A ; 124(1): 247-254, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31809047

RESUMO

Finding an "ideal" catalyst is a matter of great interest in the communities of chemists and material scientists, partly because of its wide spectrum of industrial applications. Information regarding a physical parameter termed "adsorption energy", which dictates the degrees of adhesion of an adsorbate on a substrate, is a primary requirement in selecting the catalyst for catalytic reactions. Both experiments and in silico modeling are extensively being used in estimating the adsorption energies, both of which are an Edisonian approach, demand plenty of resources, and are time-consuming. In this paper, employing a data-mining approach, we predict the adsorption energies of monoatomic and diatomic gases on the surfaces of many transition metals (TMs) in no time. With less than a set of 10 simple atomic features, our predictions of the adsorption energies are within a root-mean-squared error (RMSE) of 0.4 eV with the quantum many-body perturbation theory estimates, a computationally expensive method with a good experimental agreement. Based on the important features obtained from machine learning models, we construct a set of mathematical equations using the compressed sensing technique to calculate adsorption energy. We also show that the RMSE can be further minimized up to 0.10 eV using the precomputed adsorption energies obtained with the conventional exchange and correlation (XC) functional by a new set of scaling relations.

8.
Phys Rev Lett ; 112(14): 147601, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24766014

RESUMO

Using a first-principles-based effective Hamiltonian within molecular dynamics simulations, we discover that applying an electric field that is opposite to the initial direction of the polarization results in a switching of both the polarization and the magnetic chirality vector of multiferroic BiFeO3 at an ultrafast pace (namely, of the order of picoseconds). We discuss the origin of such a double ultrafast switching, which is found to involve original intermediate magnetic states and may hold promise for designing various devices.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39142328

RESUMO

Recent developments in the magnetization dynamics in spin textures, particularly skyrmions, offer promising new directions for magnetic storage technologies and spintronics. Skyrmions, characterized by their topological protection and efficient mobility at low current density, are increasingly recognized for their potential applications in next-generation logic and memory devices. This study investigates the dynamics of skyrmion magnetization, focusing on the manipulation of their topological states as a basis for bitwise data storage through a modified Landau-Lifshitz-Gilbert equation (LLG). We introduce spin-polarized electrons from a topological ferromagnet that induce an electric dipole moment that interacts with the electric gauge field within the skyrmion domain. This interaction creates an effective magnetic field that results in a torque that can dynamically change the topological state of the skyrmion. In particular, we show that these torques can selectively destroy and create skyrmions, effectively writing and erasing bits, highlighting the potential of using controlled electron injection for robust and scalable skyrmion-based data storage solutions.

10.
ACS Appl Mater Interfaces ; 16(7): 8763-8771, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38327063

RESUMO

Despite having favorable energetics and tunable optoelectronic properties, utilization of BaTiO3 (BTO) for photocatalytic reactions is limited by its absorption only in the ultraviolet region. To address this challenge, BTO is doped with iridium (Ir) to induce visible light absorption. The visible light-induced photocatalytic H2 generation efficiency is enhanced by 2 orders of magnitude on selective conversion of the Ir valence state from Ir4+ to Ir3+. To understand such intriguing behavior, valence state-dependent changes in the optoelectronic, structural, and surface properties and electronic band structure are comprehensively investigated. The effect of electron occupancy change between Ir4+ (t2g5 eg0) and Ir3+ (t2g6 eg0) and their energetic positions within the band gap is found to significantly influence H2 generation. Besides this, converting Ir4+ to Ir3+ enhanced the photocathodic current and lowered the onset potential. Results aid in designing photocatalysts to efficiently use low-energy photons for enhancing solar H2 production in these emerging BTO-based photocatalysts. Collectively, the observations made in this work highlight the promising application of Ir3+:BTO in z-scheme photocatalysis.

11.
J Phys Condens Matter ; 35(43)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487491

RESUMO

A new method for analyzing magnetization dynamics in spin textures under the influence of fast electron injection from topological ferromagnetic sources such as Dirac half metals has been proposed. These electrons, traveling at a velocityvwith a non-negligible value ofv/c(wherecis the speed of light), generate a non-equilibrium magnetization density in the spin-texture region, which is related to an electric dipole moment via relativistic interactions. When this resulting dipole moment interacts with gauge fields in the spin-texture region, an effective field is created that produces spin torques. These torques, like spin-orbit torques that occur when electrons are injected from a heavy metal into a ferromagnet, can display both damping-like and anti-damping-like properties. Finally, we demonstrate that such an interaction between the dipole moment and the gauge field introduces an anomalous velocity that can contribute to transverse electrical conductivity in the spin texture in a way comparable to the topological Hall effect.

12.
J Phys Chem Lett ; 14(39): 8755-8764, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738559

RESUMO

This Perspective provides an overview of recent developments in the field of 3d transition metal (TM) catalysts for different reactions, including oxygen-based reactions such as the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The spin moments of 3d TMs can be exploited to influence chemical reactions, and recent advances in this area, including the theory of chemisorption based on spin-dependent d-band centers and magnetic field effects, are discussed. The Perspective also explores the use of scaling relationships and surface magnetic moments in catalyst design as well as the effect of magnetism on chemisorption and vice versa. In addition, recent studies on the influence of a magnetic field on the ORR and the OER are presented, demonstrating the potential of ferromagnetic catalysts to enhance these reactions through spin polarization.

13.
ACS Appl Mater Interfaces ; 15(37): 43702-43711, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676924

RESUMO

In this study, we address the significant challenge of overcoming limitations in the catalytic efficiency for the oxygen evolution reaction (OER). The current linear scaling relationships hinder the optimization of the electrocatalytic performance. To tackle this issue, we investigate the potential of designing single-atom catalysts (SACs) on Mo2CO2 MXenes for electrochemical OER using first-principles modeling simulations. By employing the Electrochemical Step Symmetry Index (ESSI) method, we assess OER intermediates to fine-tune the activity and identify the optimal SAC for Mo2CO2 MXenes. Our findings reveal that both Ag and Cu exhibit effectiveness as single atoms for enhancing OER activity on Mo2CO2 MXenes. However, among the 21 chosen transition metals (TMs) in this study, Cu stands out as the best catalyst for tweaking the overpotential (ηOER). This is due to Cu's lowest overpotential compared to other TMs, which makes it more favorable for the OER performance. On the other hand, Ag is closely aligned with ESSI = ηOER, making the tuning of its overpotential more challenging. Furthermore, we employ symbolic regression analysis to identify the significant factors that exhibit a correlation with the OER overpotential. By utilizing this approach, we derive mathematical formulas for the overpotential and identify key descriptors that affect the catalytic efficiency in the electrochemical OER on Mo2CO2 MXenes. This comprehensive investigation not only sheds light on the potential of MXenes in advanced electrocatalytic processes but also highlights the prospect of improved activity and selectivity in OER applications.

14.
J Chem Theory Comput ; 19(13): 4216-4231, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339477

RESUMO

We present an efficient and scalable computational approach for conducting projected population analysis from real-space finite-element (FE)-based Kohn-Sham density functional theory calculations (DFT-FE). This work provides an important direction toward extracting chemical bonding information from large-scale DFT calculations on materials systems involving thousands of atoms while accommodating periodic, semiperiodic, or fully nonperiodic boundary conditions. Toward this, we derive the relevant mathematical expressions and develop efficient numerical implementation procedures that are scalable on multinode CPU architectures to compute the projected overlap and Hamilton populations. The population analysis is accomplished by projecting either the self-consistently converged FE discretized Kohn-Sham orbitals or the FE discretized Hamiltonian onto a subspace spanned by a localized atom-centered basis set. The proposed methods are implemented in a unified framework within the DFT-FE code where the ground-state DFT calculations and the population analysis are performed on the same FE grid. We further benchmark the accuracy and performance of this approach on representative material systems involving periodic and nonperiodic DFT calculations with LOBSTER, a widely used projected population analysis code. Finally, we discuss a case study demonstrating the advantages of our scalable approach to extract the quantitative chemical bonding information of hydrogen chemisorbed in large silicon nanoparticles alloyed with carbon, a candidate material for hydrogen storage.

15.
Nanoscale ; 15(24): 10254-10263, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37272816

RESUMO

Hall scattering factors of Sc2CF2, Sc2CO2 and Sc2C(OH)2 are calculated using Rode's iterative approach by solving the Boltzmann transport equation. This is carried out in conjunction with calculations based on density functional theory. The electrical transport in Sc2CF2, Sc2CO2 and Sc2C(OH)2 is modelled by accounting for both elastic (acoustic and piezoelectric) and inelastic (polar optical phonon) scattering. Polar optical phonon (POP) scattering is the most significant mechanism in these MXenes. We observe that there is a window of carrier concentration where the Hall factor acts dramatically; Sc2CF2 obtains an incredibly high value of 2.49 while Sc2CO2 achieves a very small value of approximately 0.5, and Sc2C(OH)2 achieves the so called ideal value of 1. We propose in this paper that such Hall factor behaviour has significant promise in the field of surface group identification in MXenes, an issue that has long baffled researchers.


Assuntos
Acústica , Dióxido de Carbono , Eletricidade , Excipientes
16.
Phys Rev Lett ; 108(5): 057204, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400957

RESUMO

We consider spin dynamics for implementation in an atomistic framework and we address the feasibility of capturing processes in the femtosecond regime by inclusion of moment of inertia. In the spirit of an s-d-like interaction between the magnetization and electron spin, we derive a generalized equation of motion for the magnetization dynamics in the semiclassical limit, which is nonlocal in both space and time. Using this result we retain a generalized Landau-Lifshitz-Gilbert equation, also including the moment of inertia, and demonstrate how the exchange interaction, damping, and moment of inertia, all can be calculated from first principles.

17.
J Phys Chem Lett ; 12(40): 9791-9799, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34596416

RESUMO

Adsorption energy scaling relationships have progressed beyond their original form, which was primarily focused on optimizing catalytic sites and lowering computational costs in simulations. The recent rise in interest in adsorption energy scaling relations is to investigate surfaces other than transition metals (TMs) as well as interactions involving complex compounds. In this work, we report our extensive study on the scaling relation (SR) between oxygen (O), with elements of neighboring groups such as boron (B), aluminum (Al), carbon (C), silicon (Si), nitrogen (N), phosphorus (P), and fluorine (F) on magnetic bimetallic surfaces. We observed that only O versus N and F seems to have a positive slope; the other slopes are negative. We present new theoretical model in terms of multiple surface descriptors using density functional theory and compressed sensing, whereas the original scaling theory was based on a single adsorbate descriptor: adsorbate valency.

18.
J Phys Condens Matter ; 32(19): 195804, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31910404

RESUMO

We propose transition metal substituted Fe2P as a new promising material for spin-transfer torque magnetic random-access memory (STT-MRAM) application. Using first-principles calculations based on density functional theory and Monte Carlo simulations, we demonstrate that this material can be used as a ferromagnetic electrode in the magnetic tunnel junction (MTJ) of STT-MRAM due to its moderate perpendicular magnetic anisotropy, high ferromagnetic transition temperature, and large tunnel magnetoresistance. This work is expected to provide a basis for the development of a new class of Fe2P-based electrode materials for STT-MRAM devices.

19.
J Phys Condens Matter ; 32(13): 135704, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31801124

RESUMO

Using Rode's iterative method, we have investigated the semi-classical transport properties of the n-type ternary compound AlGaAs2. Four scattering mechanisms have been included in our transport calculation, namely, ionized impurity, piezoelectric, acoustic deformation and polar optical phonon (POP). The scattering rates have been calculated in terms of ab initio parameters. We consider AlGaAs2 to have two distinct crystal geometries, one in tetragonal phase (space group: [Formula: see text]), while the other one having body centered tetragonal crystal structure (space group: [Formula: see text]). Higher electron mobility has been observed in the body centered tetragonal phase, thereby making it more suitable for high mobility device application, over the tetragonal phase. In order to understand the differences in electron mobility for these two phases, curvatures of the E-k dispersion of the conduction bands for these phases have been compared. At room temperature, the dominant contribution in electron mobility was found to be provided by inelastic POP scattering. We have also noted that mobility is underestimated in relaxation time approximation compared with the Rode's iterative approach.

20.
Sci Rep ; 9(1): 8381, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182741

RESUMO

Magnetic exchange interactions in pure and vanadium (V)-doped Fe16N2 are studied within the framework of density functional theory (DFT). The Curie temperatures were obtained via both mean field approximation (MFA) and Monte Carlo (MC) calculations based on interactions that were obtained through DFT. The Curie temperature (TC) for pure Fe16N2 that was obtained under MFA is substantially larger than the experimental value, suggesting the importance of thermal fluctuations. At zero field, the calculated magnetic susceptibility shows a sharp peak at T = TC that corresponds to the presence of localized d-states. From the nature of the exchange interactions, we have determined the reason for the occurrence of the giant magnetic moment in this material, which remained a mystery for decades. Finally, we posit that Fe16N2 can also act as a satisfactory spin injector for III-V semiconductors, in addition to its application as a permanent magnet, since it has very high spin polarization (compared to elemental ferromagnets) and smaller lattice mismatch (compared to half-metallic Heusler alloys) with conventional III-V semiconductors such as GaAs and InGaAs. We demonstrate this application in the case of Fe16N2(001)/InGaAs(001) hetero-structures, which exhibit substantial spin polarization in the semiconductor (InGaAs) region. PACS number: 82.65.My, 82.20.Pm, 82.30.Lp, 82.65.Jv.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA