Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(1): 172-178, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37995258

RESUMO

OBJECTIVES: Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2. METHODS: Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses. RESULTS: No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5). CONCLUSIONS: These data do not support probenecid as a SARS-CoV-2 antiviral drug.


Assuntos
Pulmão , Probenecid , Cricetinae , Animais , Humanos , Mesocricetus , Probenecid/farmacologia , Peso Corporal , Antivirais/farmacologia
2.
J Infect Dis ; 227(5): 708-713, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537213

RESUMO

Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) syndemic interactions are a major global health concern. Despite the clinical significance of coinfection, our understanding of the cellular pathophysiology and the therapeutic pharmacodynamic impact of coinfection is limited. Here, we use single-round infectious HIV-1 pseudotyped viral particles expressing green fluorescent protein alongside M. tuberculosis expressing mCherry to study pathogenesis and treatment. We report that HIV-1 infection inhibited intracellular replication of M. tuberculosis and demonstrate the therapeutic activity of antiviral treatment (efavirenz) and antimicrobial treatment (rifampicin). The described method could be applied for detailed mechanistic studies to inform the development of novel treatment strategies.


Assuntos
Coinfecção , Infecções por HIV , HIV-1 , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Coinfecção/tratamento farmacológico , Rifampina/uso terapêutico , Infecções por HIV/tratamento farmacológico
3.
Stem Cells ; 39(10): 1310-1321, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152044

RESUMO

As one of the primary points of entry of xenobiotic substances and infectious agents into the body, the lungs are subject to a range of dysfunctions and diseases that together account for a significant number of patient deaths. In view of this, there is an outstanding need for in vitro systems in which to assess the impact of both infectious agents and xenobiotic substances of the lungs. To address this issue, we have developed a protocol to generate airway epithelial basal-like cells from induced pluripotent stem cells, which simplifies the manufacture of cellular models of the human upper airways. Basal-like cells generated in this study were cultured on transwell inserts to allow formation of a confluent monolayer and then exposed to an air-liquid interface to induce differentiation into a pseudostratified epithelial construct with a marked similarity to the upper airway epithelium in vivo. These constructs contain the component cell types required of an epithelial model system, produce mucus and functional cilia, and can support SARS-CoV-2 infection/replication and the secretion of cytokines in a manner similar to that of in vivo airways. This method offers a readily accessible and highly scalable protocol for the manufacture of upper airway models that could find applications in development of therapies for respiratory viral infections and the assessment of drug toxicity on the human lungs.


Assuntos
COVID-19/patologia , COVID-19/virologia , Células-Tronco Pluripotentes Induzidas/patologia , Pulmão/patologia , Pulmão/virologia , Modelos Biológicos , SARS-CoV-2/fisiologia , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Mediadores da Inflamação/metabolismo , Replicação Viral/fisiologia
4.
Br J Clin Pharmacol ; 87(4): 2078-2088, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33085781

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug, has been shown to exhibit in vitro activity against SARS-CoV-2. The present study used physiologically based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS-CoV-2 EC90 . METHODS: A whole-body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500 and 4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. RESULTS: The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID and 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12 hours post dose was estimated. CONCLUSION: The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS-CoV-2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Reposicionamento de Medicamentos , Modelos Biológicos , Nitrocompostos/administração & dosagem , Tiazóis/administração & dosagem , Adulto , Antivirais/sangue , Antivirais/farmacocinética , COVID-19/sangue , Simulação por Computador , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Nitrocompostos/sangue , Nitrocompostos/farmacocinética , Reprodutibilidade dos Testes , Tiazóis/sangue , Tiazóis/farmacocinética , Distribuição Tecidual , Adulto Jovem
5.
J Antimicrob Chemother ; 75(2): 362-370, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665424

RESUMO

OBJECTIVES: Rapid rate-of-kill (RoK) is a key parameter in the target candidate profile 1 (TCP1) for the next-generation antimalarial drugs for uncomplicated malaria, termed Single Encounter Radical Cure and Prophylaxis (SERCaP). TCP1 aims to rapidly eliminate the initial parasite burden, ideally as fast as artesunate, but minimally as fast as chloroquine. Here we explore whether the relative RoK of the Medicine for Malaria Venture (MMV) Malaria Box compounds is linked to their mode of action (MoA) and identify scaffolds of medicinal chemistry interest. METHODS: We used a bioluminescence relative RoK (BRRoK) assay over 6 and 48 h, with exposure to equipotent IC50 concentrations, to compare the cytocidal effects of Malaria Box compounds with those of benchmark antimalarials. RESULTS: BRRoK assay data demonstrate the following relative RoKs, from fast to slow: inhibitors of PfATP4>parasite haemoglobin catabolism>dihydrofolate reductase-thymidylate synthase (DHFR-TS)>dihydroorotate dehydrogenase (DHODH)>bc1 complex. Core-scaffold clustering analyses revealed intrinsic rapid cytocidal action for diamino-glycerols and 2-(aminomethyl)phenol, but slow action for 2-phenylbenz-imidazoles, 8-hydroxyquinolines and triazolopyrimidines. CONCLUSIONS: This study provides proof of principle that a compound's RoK is related to its MoA and that the target's intrinsic RoK is also modified by factors affecting a drug's access to it. Our findings highlight that as we use medicinal chemistry to improve potency, we can also improve the RoK for some scaffolds. Our BRRoK assay provides the necessary throughput for drug discovery and a critical decision-making tool to support development campaigns. Finally, two scaffolds, diamino-glycerols and 2-phenylbenzimidazoles, exhibit fast cytocidal action, inviting medicinal chemistry improvements towards TCP1 candidates.


Assuntos
Antimaláricos , Desenvolvimento de Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Artesunato , Cloroquina
6.
Artigo em Inglês | MEDLINE | ID: mdl-31611354

RESUMO

Clinical studies of new antitubercular drugs are costly and time-consuming. Owing to the extensive tuberculosis (TB) treatment periods, the ability to identify drug candidates based on their predicted clinical efficacy is vital to accelerate the pipeline of new therapies. Recent failures of preclinical models in predicting the activity of fluoroquinolones underline the importance of developing new and more robust predictive tools that will optimize the design of future trials. Here, we used high-content imaging screening and pharmacodynamic intracellular (PDi) modeling to identify and prioritize fluoroquinolones for TB treatment. In a set of studies designed to validate this approach, we show moxifloxacin to be the most effective fluoroquinolone, and PDi modeling-based Monte Carlo simulations accurately predict negative culture conversion (sputum sterilization) rates compared to eight independent clinical trials. In addition, PDi-based simulations were used to predict the risk of relapse. Our analyses show that the duration of treatment following culture conversion can be used to predict the relapse rate. These data further support that PDi-based modeling offers a much-needed decision-making tool for the TB drug development pipeline.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Fluoroquinolonas/farmacologia , Fluoroquinolonas/farmacocinética , Modelos Biológicos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo , Linhagem Celular , Simulação por Computador , Técnicas de Apoio para a Decisão , Desenvolvimento de Medicamentos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Método de Monte Carlo , Moxifloxacina/farmacocinética , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Células THP-1 , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(8): 2080-5, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858419

RESUMO

The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.


Assuntos
Antimaláricos , Artemisininas , Lactonas , Estágios do Ciclo de Vida/efeitos dos fármacos , Sondas Moleculares , Plasmodium falciparum/metabolismo , Proteínas de Protozoários , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/síntese química , Artemisininas/química , Artemisininas/farmacologia , Química Click , Humanos , Lactonas/síntese química , Lactonas/química , Lactonas/farmacologia , Sondas Moleculares/síntese química , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo
8.
Bioorg Med Chem ; 26(11): 2996-3005, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29779669

RESUMO

A series of aryl carboxamide and benzylamino dispiro 1,2,4,5-tetraoxane analogues have been designed and synthesized in a short synthetic sequence from readily available starting materials. From this series of endoperoxides, molecules with in vitro IC50s versus Plasmodium falciparum (3D7) as low as 0.84 nM were identified. Based on an assessment of blood stability and in vitro microsomal stability, N205 (10a) was selected for rodent pharmacokinetic and in vivo antimalarial efficacy studies in the mouse Plasmodium berghei and Plasmodium falciparum Pf3D70087/N9 severe combined immunodeficiency (SCID) mouse models. The results indicate that the 4-benzylamino derivatives have excellent profiles with a representative of this series, N205, an excellent starting point for further lead optimization studies.


Assuntos
Antimaláricos/uso terapêutico , Malária , Morfolinas/síntese química , Plasmodium falciparum , Tetraoxanos/síntese química , Administração Oral , Animais , Antimaláricos/síntese química , Antimaláricos/química , Modelos Animais de Doenças , Estabilidade de Medicamentos , Humanos , Concentração Inibidora 50 , Malária/tratamento farmacológico , Camundongos , Morfolinas/química , Morfolinas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Ratos , Tetraoxanos/química , Tetraoxanos/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 112(3): 755-60, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25564664

RESUMO

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.


Assuntos
Antimaláricos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Piridonas/metabolismo , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/química , Simulação de Acoplamento Molecular
10.
J Antimicrob Chemother ; 72(3): 717-726, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999014

RESUMO

Objectives: A future treatment for uncomplicated malaria will contain at least one component that exerts a rapid rate of kill. We describe here the validation and application of a simple, robust and rapid bioluminescence-based assay for the determination of the initial rate of kill in intra-erythrocytic asexual stages of Plasmodium falciparum . Methods: A modification to the concentration-response bioluminescence [here termed bioluminescence relative rate of kill (BRRoK)] assay, utilizing exposure to fold-IC 50 concentrations (0.33× to 9×), was used to monitor the immediate cytocidal effect of 372 open-source compounds for antimalarial drug discovery available through the Medicines for Malaria Venture Malaria Box. Results: Antimalarial drugs that exert a rapid cytocidal effect produce a concentration-dependent loss of bioluminescence signal that correlates with available in vitro and in vivo estimates of parasite clearance time and parasite reduction ratio. Following the measurement of IC 50 for the Malaria Box compounds in Dd2 luc , the BRRoK assay was used to identify and rank 372 compounds for their initial cytocidal activity. Fifty-three compounds in the Malaria Box show an initial relative rate of kill greater than that of chloroquine, with 17 of these having an initial relative rate of kill greater than that of dihydroartemisinin. Conclusions: The BRRoK assay provides a rapid assay format for the estimation of a key pharmacodynamic property of antimalarial drug action. The simplicity and robustness of the assay suggests it would be readily scalable for high-throughput screening and a critical decision-making tool for antimalarial drug development.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas/métodos , Medições Luminescentes/métodos , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Artemisininas/farmacologia , Cloroquina/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA