Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895009

RESUMO

The capacity to emit isoprene, among other stresses, protects plants from drought, but the molecular mechanisms underlying this trait are only partly understood. The Arecaceae (palms) constitute a very interesting model system to test the involvement of isoprene in enhancing drought tolerance, as their high isoprene emissions may have contributed to make them hyperdominant in neotropical dry forests, characterized by recurrent and extended periods of drought stress. In this study we isolated and functionally characterized a novel isoprene synthase, the gene responsible for isoprene biosynthesis, from Copernicia prunifera, a palm from seasonally dry tropical forests. When overexpressed in the non-emitter Arabidopsis thaliana, CprISPS conferred significant levels of isoprene emission, together with enhanced tolerance to water limitation throughout plant growth and development, from germination to maturity. CprISPS overexpressors displayed higher germination, cotyledon/leaf greening, water usage efficiency, and survival than WT Arabidopsis under various types of water limitation. This increased drought tolerance was accompanied by a marked transcriptional up-regulation of both ABA-dependent and ABA-independent key drought response genes. Taken together, these results demonstrate the capacity of CprISPS to enhance drought tolerance in Arabidopsis and suggest that isoprene emission could have evolved in Arecaceae as an adaptive mechanism against drought.


Assuntos
Arabidopsis , Arecaceae , Arabidopsis/metabolismo , Árvores/genética , Ácido Abscísico , Resistência à Seca , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Arecaceae/genética , Estresse Fisiológico/genética , Secas , Água , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005363

RESUMO

Direct injection mass spectrometry (DIMS) entails the direct introduction of a gaseous sample into a mass analyser without prior treatment or separation. DIMS techniques offer the opportunity to monitor processes in time, with limits of detection as low as 0.5 parts per trillion in volume (for a 1 s measurement time) while providing results with high informational content. This review provides insight into current and promising future developments of DIMS in the analysis of grape, wine and other alcoholic beverages. Thanks to its unique characteristics, DIMS allows the online monitoring of volatile organic compounds (VOCs) released by grapes during fermentative bioprocesses or by wine directly from the glass headspace or during drinking. A DIMS-based approach can also be adopted to perform quality control and high-throughput analysis, allowing us to characterise the volatile profile of large sample sets rapidly and in a comprehensive fashion. Furthermore, DIMS presents several characteristic elements of green analytical chemistry approaches, catalysing an interest linked to the development of sustainable paths in research and development activities in the field of viticulture and oenology.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vitis/química , Bebidas Alcoólicas/análise , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise
3.
Molecules ; 28(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005380

RESUMO

Volatile organic compounds (VOCs) are molecules present in our everyday life, and they can be positive, such as in the formation of odour and food flavour, or harmful to the environment and humans, and research is focusing on limiting their emissions. Various methods have been used to achieve this purpose. Firstly, we review three main degradation methods: activated carbon, photocatalysis and a synergetic system. We provide a general overview of the operative conditions and report the possibility of VOC abatement during cooking. Within the literature, none of these systems has ever been tested in the presence of complex matrices, such as during cooking processes. The aim of this study is to compare the three methods in order to understand the behaviour of filter systems in the case of realistically complex gas mixtures. Proton transfer reaction-mass spectrometry (PTR-MS) has been used in the real-time monitoring of volatilome. Due to the fact that VOC emissions are highly dependent on the composition of the food cooked, we evaluated the degradation capacity of the three systems for different burger types (meat, greens, and fish). We demonstrate the pros and cons of photocatalysis and adsorption and how a combined approach can mitigate the drawbacks of photocatalysis.

4.
Analyst ; 147(22): 5138-5148, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36227218

RESUMO

Thermal modification of wood is a well-known industrial process performed to increase the durability and dimensional stability or to change the colour of natural wood. The treatment influences many other properties of wood including the emission of volatile organic compounds (VOCs). VOC release ultimately affects the quality of indoor air and the capability of having low VOC emission is often included as a key parameter for the attribution of quality labels. In the present work, wood from six tree species was subjected to different types of treatment and VOC profiling was carried out on both treated and untreated samples by means of PTR-ToF-MS. Different types of thermal treatment were tested, involving either overpressure or vacuum and the effect of different temperature profiles was evaluated. Hardwood and softwood showed different release profiles under all tested conditions: the headspace of softwood was richer in several VOCs, such as terpenes, phenols and C6-C9 aldehydes and carboxylic acids. Upon thermal treatment, terpene emissions decreased, whereas several other VOCs, such as formic acid, formaldehyde, furfural and acetic acid, were released in higher amounts. With its high sensitivity and throughput, PTR-ToF-MS appears to be a very powerful analytical tool, useful in supporting the selection of wood materials for different end uses.


Assuntos
Compostos Orgânicos Voláteis , Madeira , Formaldeído , Aldeídos
5.
Sensors (Basel) ; 22(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35898057

RESUMO

Methanol, naturally present in small quantities in the distillation of alcoholic beverages, can lead to serious health problems. When it exceeds a certain concentration, it causes blindness, organ failure, and even death if not recognized in time. Analytical techniques such as chromatography are used to detect dangerous concentrations of methanol, which are very accurate but also expensive, cumbersome, and time-consuming. Therefore, a gas sensor that is inexpensive and portable and capable of distinguishing methanol from ethanol would be very useful. Here, we present a resistive gas sensor, based on tin oxide nanowires, that works in a thermal gradient. By combining responses at various temperatures and using machine learning algorithms (PCA, SVM, LDA), the device can distinguish methanol from ethanol in a wide range of concentrations (1-100 ppm) in both dry air and under different humidity conditions (25-75% RH). The proposed sensor, which is small and inexpensive, demonstrates the ability to distinguish methanol from ethanol at different concentrations and could be developed both to detect the adulteration of alcoholic beverages and to quickly recognize methanol poisoning.


Assuntos
Metanol , Nanofios , Bebidas Alcoólicas/análise , Etanol/análise , Aprendizado de Máquina , Metanol/química
6.
J Chem Ecol ; 47(7): 653-663, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34196858

RESUMO

Upon damage by herbivores, plants release herbivory-induced plant volatiles (HIPVs). To find their prey, the pest's natural enemies need to be fine-tuned to the composition of these volatiles. Whereas standard methods can be used in the identification and quantitation of HIPVs, more recently introduced techniques such as PTR-ToF-MS provide temporal patterns of the volatile release and detect additional compounds. In this study, we compared the volatile profile of apple trees infested with two aphid species, the green apple aphid Aphis pomi, and the rosy apple aphid Dysaphis plantaginea, by CLSA-GC-MS complemented by PTR-ToF-MS. Compounds commonly released in conjunction with both species include nonanal, decanal, methyl salicylate, geranyl acetone, (Z)-3-hexenyl acetate, (Z)-3-hexenyl butanoate, (Z)-3-hexenyl 2-methyl-butanoate, (E)-ß-caryophyllene, ß-bourbonene and (Z)-3-hexenyl benzoate. In addition, benzaldehyde and (E)-ß-farnesene were exclusively associated with A. pomi, whereas linalool, (E)-4,8-dimethyl-1,3,7-nonatriene were exclusively associated with D. plantaginea. PTR-ToF-MS additionally detected acetic acid (AA) and 2-phenylethanol (PET) in the blends of both trees attacked by aphid species. In the wind tunnel, the aphid predator, Chrysoperla carnea (Stephens), responded strongly to a blend of AA and PET, much stronger than to AA or PET alone. The addition of common and species-specific HIPVs did not increase the response to the binary blend of AA and PET. In our setup, two host-associated volatiles AA + PET appeared sufficient in the attraction of C. carnea. Our results also show the importance of combining complementary methods to decipher the odor profile associated with plants under pest attack and identify behaviourally active components for predators.


Assuntos
Afídeos/fisiologia , Malus/química , Compostos Orgânicos Voláteis/química , Ácido Acético/análise , Ácido Acético/farmacologia , Animais , Cromatografia Gasosa-Espectrometria de Massas , Herbivoria/efeitos dos fármacos , Malus/metabolismo , Álcool Feniletílico/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Comportamento Predatório/efeitos dos fármacos , Especificidade da Espécie , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacologia
7.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922148

RESUMO

Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host's immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.


Assuntos
Actinidia/imunologia , Etilenos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Pseudomonas/patogenicidade , Virulência , Actinidia/crescimento & desenvolvimento , Actinidia/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas/classificação
8.
J Plant Res ; 133(1): 123-131, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701286

RESUMO

Functional characterization of plant volatile organic compound (VOC) biosynthetic genes and elucidation of the biological function of their products often involve the screening of large numbers of plants from either independent transformation events or mapping populations. The low time resolution of standard gas chromatographic methods, however, represents a major bottleneck for in planta genetic characterization of VOC biosynthetic genes. Here we present a fast and highly-sensitive method for the high-throughput characterization of VOC emission levels/patterns by coupling a Proton Transfer Reaction Time-of-Flight Mass Spectrometer to an autosampler for automation of sample measurement. With this system more than 700 samples per day can be screened, detecting for each sample hundreds of spectrometric peaks in the m/z 15-300 range. As a case study, we report the characterization of VOC emissions from 116 independent Arabidopsis thaliana lines transformed with a putative isoprene synthase gene, confirming its function also when fused to a C-terminal 3×FLAG tag. We demonstrate that the method is more reliable than conventional characterization of transgene expression for the identification of the most highly isoprene-emitting lines. The throughput of this VOC screening method exceeds that of existing alternatives, potentially allowing its application to reverse and forward genetic screenings of genes contributing to VOC emission, constituting a powerful tool for the functional characterization of VOC biosynthetic genes and elucidation of the biological functions of their products directly in planta.


Assuntos
Compostos Orgânicos Voláteis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Prótons
9.
Molecules ; 25(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164157

RESUMO

Mascarpone, a soft-spread cheese, is an unripened dairy product manufactured by the thermal-acidic coagulation of milk cream. Due to the mild flavor and creamy consistency, it is a base ingredient in industrial, culinary, and homemade preparations (e.g., it is a key constituent of a widely appreciated Italian dessert 'Tiramisù'). Probably due to this relevance as an ingredient rather than as directly consumed foodstuff, mascarpone has not been often the subject of detailed studies. To the best of our knowledge, no investigation has been carried out on the volatile compounds contributing to the mascarpone cheese aroma profile. In this study, we analyzed the Volatile Organic Compounds (VOCs) in the headspace of different commercial mascarpone cheeses by two different techniques: Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME GC-MS) and Proton-Transfer Reaction-Mass Spectrometry coupled to a Time of Flight mass analyzer (PTR-ToF-MS). We coupled these two approaches due to the complementarity of the analytical potential-efficient separation and identification of the analytes on the one side (HS-SPME GC-MS), and effective, fast quantitative analysis without any sample preparation on the other (PTR-ToF-MS). A total of 27 VOCs belonging to different chemical classes (9 ketones, 5 alcohols, 4 organic acids, 3 hydrocarbons, 2 furans, 1 ester, 1 lactone, 1 aldehyde, and 1 oxime) have been identified by HS-SPME GC-MS, while PTR-ToF-MS allowed a rapid snapshot of volatile diversity confirming the aptitude to rapid noninvasive quality control and the potential in commercial sample differentiation. Ketones (2-heptanone and 2-pentanone, in particular) are the most abundant compounds in mascarpone headspace, followed by 2-propanone, 2-nonanone, 2-butanone, 1-pentanol, 2-ethyl-1-hexanol, furfural and 2-furanmethanol. The study also provides preliminary information on the differentiation of the aroma of different brands and product types.


Assuntos
Queijo/análise , Odorantes/análise , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cetonas/química , Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos
10.
Food Microbiol ; 77: 61-68, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30297057

RESUMO

Cereal-based functional beverages represent social, economic, and environmental sustainable opportunities to cope with emerging trends in food consumption and global nutrition. Here we report, for the first time, the polyphasic characterization of three cereal-based kefir-like riboflavin-enriched beverages, obtained from oat, maize and barley flours, and their comparison with classical milk-based kefir. The four matrices were successfully fermented with commercial starters: i) milk-kefir and ii) water-kefir, proving the potential of cereal ingredients in the formulation of dairy-like fermented beverages with milk-kefir starter behavior better in these matrices. In the light of their potentiality, seven riboflavin-producing Andean Lactic Acid Bacteria (LAB) were tested for tolerance to food stresses commonly encountered during food fermentation. Moreover, the LAB strains investigated were screened for spontaneous riboflavin overproducing derivatives. Lactobacillus plantarum M5MA1-B2 with outstanding response to stress, was selected to improve riboflavin content in an in situ fortification approach. The combination of L. plantarum M5MA1-B2 riboflavin overproducing strain with milk kefir starter in oat, lead to cover, for one serving of 100 g, 11.4% of Recommended Dietary Allowance (RDA). Besides, addition of L. plantarum M5MA1-B2 improved performance of water kefir in oat and maize matrices. Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) analysis provided the on-line Volatile Organic Compounds profiles supporting the best combination of starter, LAB and cereal matrix for novel functional foods development.


Assuntos
Bebidas/microbiologia , Grão Comestível/microbiologia , Kefir/microbiologia , Lactobacillales/metabolismo , Riboflavina/metabolismo , Animais , Avena , Produtos Fermentados do Leite , Grão Comestível/anatomia & histologia , Fermentação , Farinha , Microbiologia de Alimentos , Kefir/análise , Lactobacillus plantarum/metabolismo , Leuconostoc mesenteroides/metabolismo , Leite/microbiologia , Recomendações Nutricionais , Compostos Orgânicos Voláteis/metabolismo , Zea mays
11.
Rapid Commun Mass Spectrom ; 32(1): 57-62, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28913850

RESUMO

RATIONALE: The processing of retinyl acetate, a vitamin and biomarker, at high temperatures causes significant decomposition of the compound and thus loss of its activity. The rate of mass loss can be conveniently studied by thermogravimetry (TG). However, this technique generally fails to reveal which compounds have evolved from the compound. In this work we propose a new hyphenation approach to continuously monitor the thermal decomposition of retinyl acetate and follow the evolution of specific volatile organic compounds (VOCs). METHODS: Thermal degradation of retinyl acetate was followed by TG coupled to a direct injection mass spectrometer based on proton transfer reaction mass spectrometry (PTR-MS) to follow continuously the thermal decomposition of retinyl acetate. The results were also compared with those obtained by a second evolved gas analysis system based on the coupling of TG with FTIR. RESULTS: The TG results showed two main mass losses, at 180°C and 350°C. When the PTR-MS instrument was connected to the outlet of the TG instrument, specific fragment ions (m/z 43, 61, 75, 85 and 97) showed characteristic evolution profiles. The first mass loss was mainly associated with the release of acetic acid (m/z 43 and 61), whereas the second mass loss was connected with the degradation of the molecule backbone (m/z 43, 61, 75, 85 and 97). These results were substantially correlated with those achieved by TG coupled with FTIR, although PTR-MS showed superior performance in terms of the qualitative identification of specific fragments and better sensitivity toward complex organic VOCs. CONCLUSIONS: The proposed TG-PTR-MS technique shows a great potential for following in real time the thermal degradation of ingredients such as retinyl acetate and identifying compounds evolved at specific temperatures.


Assuntos
Espectrometria de Massas/métodos , Vitamina A/análogos & derivados , Ácido Acético/química , Diterpenos , Temperatura Alta , Prótons , Ésteres de Retinil , Vitamina A/química , Compostos Orgânicos Voláteis/química
12.
Plant J ; 88(6): 963-975, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27531564

RESUMO

Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors.


Assuntos
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Malus/metabolismo , Ciclopropanos , Etilenos/antagonistas & inibidores , Frutas/efeitos dos fármacos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/efeitos dos fármacos , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
J Exp Bot ; 68(7): 1467-1478, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338794

RESUMO

Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds.


Assuntos
Frutas/genética , Estudo de Associação Genômica Ampla , Malus/genética , Odorantes/análise , Locos de Características Quantitativas , Compostos Orgânicos Voláteis/metabolismo , Frutas/fisiologia , Malus/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
J Exp Bot ; 68(9): 2439-2451, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449129

RESUMO

Arundo donax has been identified as an important biomass and biofuel crop. Yet, there has been little research on photosynthetic and metabolic traits, which sustain the high productivity of A. donax under drought conditions. This study determined phenotypic differences between two A. donax ecotypes coming from stands with contrasting adaptation to dry climate. We hypothesized that the Bulgarian (BG) ecotype, adapted to drier conditions, exhibits greater drought tolerance than the Italian (IT) ecotype, adapted to a more mesic environment. Under well-watered conditions the BG ecotype was characterized by higher photosynthesis, mesophyll conductance, intrinsic water use efficiency, PSII efficiency, isoprene emission rate and carotenoids, whereas the IT ecotype showed higher levels of hydroxycinnamates. Photosynthesis of water-stressed plants was mainly limited by diffusional resistance to CO2 in BG, and by biochemistry in IT. Recovery of photosynthesis was more rapid and complete in BG than in IT, which may indicate better stability of the photosynthetic apparatus associated to enhanced induction of volatile and non-volatile isoprenoids and phenylpropanoid biosynthesis. This study shows that a large phenotypic plasticity among A. donax ecotypes exists, and may be exploited to compensate for the low genetic variability of this species when selecting plant productivity in constrained environments.


Assuntos
Adaptação Biológica , Secas , Ecótipo , Fotossíntese , Poaceae/fisiologia , Bulgária , Butadienos , Carotenoides/biossíntese , Hemiterpenos/biossíntese , Itália , Pentanos , Fenótipo , Poaceae/genética
15.
J Dairy Sci ; 100(3): 1650-1656, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28088419

RESUMO

Milk flavor varies greatly due to oxidative stress during storage. Several studies have documented the use of volatile biomarkers for determining milk oxidation, but only a few have focused on the development of inline procedures enabling the monitoring of milk oxidative stress. In this work, oxidative stress was induced in pasteurized milk samples by spiking increasing concentrations of copper ions (from 0 to 32 mg·L-1). During storage (4°C), hexanal evolution was monitored by a proton transfer reaction mass spectrometer. The mass fragment m/z 83 was selected as a biomarker for hexanal determination. Its intensity evolved with a sigmoidal trend, showing a maximum rate proportional to the Cu2+ content in milk. The proposed approach is simple, fast (up to 120 sample/h), sensitive (8.8 µg·m-3 per µM hexanal in the sample), with low limit of detection (0.5 µM, determined as 3 times the standard deviation divided by the slope of a calibration line), precise (<6%), with good recovery (99-104%), and noninvasive. The method can be used for laboratory screening of milk susceptibility toward oxidation or for quality control in the processing line.


Assuntos
Cobre , Leite , Animais , Biomarcadores , Íons , Estresse Oxidativo
16.
Genet Sel Evol ; 48(1): 89, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852216

RESUMO

BACKGROUND: Volatile organic compounds determine important quality traits in cheese. The aim of this work was to infer genetic parameters of the profile of volatile compounds in cheese as revealed by direct-injection mass spectrometry of the headspace gas from model cheeses that were produced from milk samples from individual cows. METHODS: A total of 1075 model cheeses were produced using raw whole-milk samples that were collected from individual Brown Swiss cows. Single spectrometry peaks and a combination of these peaks obtained by principal component analysis (PCA) were analysed. Using a Bayesian approach, we estimated genetic parameters for 240 individual spectrometry peaks and for the first ten principal components (PC) extracted from them. RESULTS: Our results show that there is some genetic variability in the volatile compound fingerprint of these model cheeses. Most peaks were characterized by a substantial heritability and for about one quarter of the peaks, heritability (up to 21.6%) was higher than that of the best PC. Intra-herd heritability of the PC ranged from 3.6 to 10.2% and was similar to heritabilities estimated for milk fat, specific fatty acids, somatic cell count and some coagulation parameters in the same population. We also calculated phenotypic correlations between PC (around zero as expected), the corresponding genetic correlations (from -0.79 to 0.86) and correlations between herds and sampling-processing dates (from -0.88 to 0.66), which confirmed that there is a relationship between cheese flavour and the dairy system in which cows are reared. CONCLUSIONS: This work reveals the existence of a link between the cow's genetic background and the profile of volatile compounds in cheese. Analysis of the relationships between the volatile organic compound (VOC) content and the sensory characteristics of cheese as perceived by the consumer, and of the genetic basis of these relationships could generate new knowledge that would open up the possibility of controlling and improving the sensory properties of cheese through genetic selection of cows. More detailed investigations are necessary to connect VOC with the sensory properties of cheese and gain a better understanding of the significance of these new phenotypes.


Assuntos
Queijo/análise , Espectrometria de Massas/métodos , Prótons , Paladar/genética , Animais , Bovinos , Padrões de Herança/genética , Leite/química , Fenótipo , Análise de Componente Principal , Compostos Orgânicos Voláteis/análise
17.
J Chem Ecol ; 42(12): 1265-1280, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27896554

RESUMO

This study investigated the volatile emission from apple (Malus x domestica Borkh., cv. Golden Delicious) foliage that was either intact, mechanically-damaged, or exposed to larval feeding by Pandemis heparana (Denis and Schiffermüller) (Lepidoptera: Tortricidae). Volatiles were collected by closed-loop-stripping-analysis and characterized by gas chromatography-mass spectrometry in three time periods: after 1 h and again 24 and 48 h later. Volatiles for all treatments also were monitored continuously over a 72-h period by the use of proton transfer reaction - time of flight-mass spectrometry (PTR-ToF-MS). In addition, the volatile samples were analyzed by gas chromatography-electroantennographic detection (GC-EAD) using male and female antennae of P. heparana. Twelve compounds were detected from intact foliage compared with 23 from mechanically-damaged, and 30 from P. heparana-infested foliage. Interestingly, six compounds were released only by P. heparana-infested foliage. The emission dynamics of many compounds measured by PTR-ToF-MS showed striking differences according to the timing of herbivory and the circadian cycle. For example, the emission of green leaf volatiles began shortly after the start of herbivory, and increased over time independently from the light-dark cycle. Conversely, the emission of terpenes and aromatic compounds showed a several-hour delay in response to herbivory, and followed a diurnal rhythm. Methanol was the only identified volatile showing a nocturnal rhythm. Consistent GC-EAD responses were found for sixteen compounds, including five aromatic ones. A field trial in Sweden demonstrated that benzyl alcohol, 2-phenylethanol, phenylacetonitrile, and indole lures placed in traps were not attractive to Pandemis spp. adults, but 2-phenylethanol and phenylacetonitrile when used in combination with acetic acid were attractive to both sexes.


Assuntos
Herbivoria , Lepidópteros/fisiologia , Malus/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Masculino , Malus/química , Folhas de Planta/química , Folhas de Planta/fisiologia , Compostos Orgânicos Voláteis/metabolismo
18.
Molecules ; 21(4): 483, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27077836

RESUMO

In light of the increasing attention towards "green" solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.


Assuntos
Produtos Biológicos/química , Aditivos Alimentares/química , Saccharomyces cerevisiae/química , Compostos Orgânicos Voláteis/química , Cerveja/microbiologia , Produtos Biológicos/isolamento & purificação , Aditivos Alimentares/isolamento & purificação , Humanos , Espectrometria de Massas , Compostos Orgânicos Voláteis/isolamento & purificação , Vinho/microbiologia
19.
Appl Microbiol Biotechnol ; 99(9): 3787-95, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808516

RESUMO

Analytical tools for the identification and quantification of volatile organic compounds (VOCs) produced by microbial cultures have countless applications in an industrial and research context which are still not fully exploited. The various techniques for VOC analysis generally arise from the application of different scientific and technological philosophies, favoring either sample throughput or chemical information. Proton transfer reaction-mass spectrometry (PTR-MS) represents a valid compromise between the two aforementioned approaches, providing rapid and direct measurements along with highly informative analytical output. The present paper reviews the main applications of PTR-MS in the microbiological field, comprising food, environmental, and medical applications.


Assuntos
Espectrometria de Massas/métodos , Técnicas Microbiológicas/métodos , Compostos Orgânicos Voláteis/análise
20.
Molecules ; 20(2): 2445-74, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25647579

RESUMO

Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L.) are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported.


Assuntos
Frutas/química , Extratos Vegetais/química , Rubus/química , Resistência à Doença , Frutas/microbiologia , Humanos , Doenças das Plantas/microbiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Rubus/microbiologia , Estereoisomerismo , Paladar , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA