Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(16): e18588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153206

RESUMO

Huntington's disease (HD) is a gradually severe neurodegenerative ailment characterised by an increase of a specific trinucleotide repeat sequence (cytosine-adenine-guanine, CAG). It is passed down as a dominant characteristic that worsens over time, creating a significant risk. Despite being monogenetic, the underlying mechanisms as well as biomarkers remain poorly understood. Furthermore, early detection of HD is challenging, and the available diagnostic procedures have low precision and accuracy. The research was conducted to provide knowledge of the biomarkers, pathways and therapeutic targets involved in the molecular processes of HD using informatic based analysis and applying network-based systems biology approaches. The gene expression profile datasets GSE97100 and GSE74201 relevant to HD were studied. As a consequence, 46 differentially expressed genes (DEGs) were identified. 10 hub genes (TPM1, EIF2S3, CCN2, ACTN1, ACTG2, CCN1, CSRP1, EIF1AX, BEX2 and TCEAL5) were further differentiated in the protein-protein interaction (PPI) network. These hub genes were typically down-regulated. Additionally, DEGs-transcription factors (TFs) connections (e.g. GATA2, YY1 and FOXC1), DEG-microRNA (miRNA) interactions (e.g. hsa-miR-124-3p and has-miR-26b-5p) were also comprehensively forecast. Additionally, related gene ontology concepts (e.g. sequence-specific DNA binding and TF activity) connected to DEGs in HD were identified using gene set enrichment analysis (GSEA). Finally, in silico drug design was employed to find candidate drugs for the treatment HD, and while the possible modest therapeutic compounds (e.g. cortistatin A, 13,16-Epoxy-25-hydroxy-17-cheilanthen-19,25-olide, Hecogenin) against HD were expected. Consequently, the results from this study may give researchers useful resources for the experimental validation of Huntington's diagnosis and therapeutic approaches.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Doença de Huntington , Mapas de Interação de Proteínas , Doença de Huntington/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Humanos , Biologia Computacional/métodos , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Transcriptoma/genética , Ontologia Genética , MicroRNAs/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Chem Biodivers ; : e202401257, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283969

RESUMO

Herbal remedies have shown great promise for improving human health. The plant Crotalaria quinquefolia is used in folk medicine to cure different diseases, including scabies, fever, discomfort, and lung infections. The present research was designed to explore bioactive compounds and evaluate the neuropharmacological effects of C. quinquefolia through in vivo and in silico approaches. Different secondary metabolites as well as the antioxidant activity were measured. Furthermore, chemical compounds were identified by HPLC and GCMS analysis. The neuropharmacological activity was examined by hole cross, hole board, open field, Y-maze, elevated plus maze, and thiopental sodium induced sleeping time tests in mice at doses of 100 mg/kg and 200 mg/kg body weight. Besides, an in-silico study was performed on proteins related to Alzheimer disease. The extract showed a significant content of secondary metabolites and antioxidant potential. The in-silico analysis showed that myricetin, quercetin, rutin, and kaempferol have good binding affinity with studied proteins, and QSAR studies revealed potential benefits for treating dementia, age-related macular degeneration, and more. The findings of the present neurological activity collectively imply that the extract has strong CNS depressant and anxiolytic activity. Therefore, C. quinquefolia can be a potential source of secondary metabolites to treat Alzheimer disease.

3.
Saudi Pharm J ; 32(1): 101887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38090734

RESUMO

Traditional medicinal plants have played a promising role in the human health system. In folklore medicine, Crotalaria quinquefolia L. is used to treat fever, pain, eczema, impetigo, lung infections, scabies. The present investigation was executed to identify secondary metabolites responsible for anti-diabetic potential of C. quinquefolia L. leaf extract along with their possible mechanistic pathways. The anti-hyperglycemic activity was assessed by in vitro α-amylase and α-glucosidase inhibitory assays and an in vivo oral glucose tolerance test and diabetogenic effect of streptozotocin in mice, followed by an integrative computational analysis. A total of 23 compounds were identified through GCMS and HPLC. The extract showed potent in-vitro α-amylase and α-glucosidase suppressive activity with IC50 values of 12.8 ± 0.1 µg/mL and 36.3 ± 0.07 µg/mL, respectively. In an in vivo oral glucose tolerance test, the extract (400 mg/kg body weight) prompted blood glucose levels to plummet by 18.9 % after 30 min, compared to the normal control and streptozotocin induced diabetes test, maximum glucose reduction was observed 11.67 % by dose of 200 mg/kg compared to the control; glibenclamide and extract (400 mg/kg) reduced blood glucose levels by 1.3 % and 16.7 %, respectively, compared to diabetic control at the end of the trial. Additionally, among the identified compounds, myricetin, quercetin, rutin, and kaempferol revealed good binding affinity as well as stability with the studied anti-diabetic proteins in docking and molecular dynamics simulation studies. Furthermore, QSAR analysis and network pharmacology studies of the identified compounds divulged enhanced insulin secretion stimulation, insulin receptor kinase activity, PPARγ expression; enzyme inhibition (α-glucosidase, α-amylase) and protection of the pancreas -mediated antidiabetic effects. Besides, they proved strong inhibitory potential against the studied antidiabetic proteins in other computational analysis. Based on the present findings, it can be affirmed that C. quinquefolia extract possesses anti-diabetic activity.

4.
Saudi Pharm J ; 32(1): 101884, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38090733

RESUMO

Diabetes mellitus (DM) is a metabolic disorder arising from insulin deficiency and defectiveness of the insulin receptor functioning on transcription factor where the body loses control to regulate glucose metabolism in ß-cells, pancreatic and liver tissues to homeostat glucose level. Mainstream medicines used for DM are incapable of restoring normal glucose homeostasis and have side effects where medicinal plant-derived medicine administrations have been claimed to cure diabetes or at least alleviate the significant symptoms and progression of the disease by the traditional practitioners. This study focused on screening phytocompounds and their pharmacological effects on anti-hyperglycemia on Swiss Albino mice of n-hexane, ethyl acetate, and ethanol extract of both plants Mycetia sinensis and Allophylus villosus as well as the in-silico investigations. Qualitative screening of phytochemicals and total phenolic and flavonoid content estimation were performed significantly in vitro analysis. FTIR and GC-MS analysis précised the functional groups and phytochemical investigations where FTIR scanned 14, 23 & 17 peaks in n-hexane, ethyl acetate, and ethanol extracts of Mycetia sinensis whereas the n-hexane, ethyl acetate, and ethanol extracts of Allophylus villosus scanned 11 peaks, 18 peaks, and 29 peaks, respectively. In GC-MS, 24 chemicals were identified in Mycetia sinensis extracts, whereas 19 were identified in Allophylus villosus extracts. Moreover, both plants' ethyl acetate and ethanol fractioned extracts were reported significantly (p < 0.05) with concentrations of 250 mg and 500 mg on mice for oral glucose tolerance test, serum creatinine test and serum alkaline phosphatase test. In In silico study, a molecular docking study was done on these 43 phytocompounds identified from Mycetia sinensis and Allophylus villosus to identify their binding affinity to the target Alpha Glucosidase (AG) and Peroxisome proliferator-activated receptor gamma protein (PPARG). Therefore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, quantum mechanics-based DFT (density-functional theory), and molecular dynamics simulation were done to assess the effectiveness of the selected phytocompounds. According to the results, phytocompounds such as 2,4-Dit-butyl phenyl 5-hydroxypentanoate and Diazo acetic acid (1S,2S,5R)-2-isopropyl-5-methylcyclohexyl obtained from Mycetia sinensis and Allophylus villosus extract possess excellent antidiabetic activities.

5.
Arch Biochem Biophys ; 747: 109763, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739116

RESUMO

OBJECTIVE: Cardiac hypertrophy is a condition of abnormal cardiomyocyte enlargement accompanied by ventricular wall thickening. The study aims to investigate the role of miR-15a-5p in the regulation of mitofusin-2 (MFN-2) and to explore the cardioprotective effect of terpolymers ES-37 and L-37. METHODS: In this study, the Sprague Dawley rats' cardiac hypertrophic model was established by administering 5 mg/kg Isoproterenol subcutaneously every other day for 14 days. As treatment rats received NAC (50 mg/kg), NAC treatment (50 mg/kg NAC + 5 mg/kg ISO), ES-37 (1 mg/kg) and ES-37 treatment (1 mg/kg ES-37+5 mg/kg ISO), L-37 (1 mg/kg) and L-37 treatment (1 mg/kg L-37+5 mg/kg ISO). subcutaneously every other day for 14 days. NAC, ES 37 and L-37 were given after 1 h of Isoproterenol administration in treatment groups. Cardiac hypertrophy was confirmed through morphological and histological analysis. For estimation of oxidative stress profiling, ROS and TBARS and antioxidative profiling superoxide dismutase (SOD), Catalase, and Glutathione (GSH) levels were checked. Triglyceride, cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) were performed to evaluate levels of lipid profiling and liver profiling. Molecular expression analysis was checked through real-time PCR, and western blotting both at the transcriptional and translational levels. Molecular docking studies were performed to study the interactions and modes of binding between the synthetic polymers with three proteins (Mitofusin-2, DRP-1 and PUMA). All the studies were carried out using the AutoDock Vina software and the protein-ligand complexes were visualized in Biovia Discovery Studio. Cardiac hypertrophy was confirmed by the relative changes in the cellular structure of the heart by histopathological examination and physiological changes by estimating organ weights. Biochemical profiling results depict elevated oxidative and lipid profiles signify myocardial damage. N-acetyl cysteine (NAC), ES-37, and L-37 overcome the cardiac hypertrophic responses through attenuating oxidative stress and enhancing the antioxidative signaling mechanism. miR-15a-5p was identified as hypertrophic microRNA directly regulating the expression of Mitofusin-2 (MFN-2). Significantly increased expression of miR-15a-5p, Dynamin related protein 1 (Drp1), and P53 upregulated modulator of apoptosis (PUMA), was observed in the disease group, whereas MFN-2 expression was observed downregulated. N-acetyl cysteine (NAC), ES-37, and L-37 showed increased expression of antiapoptotic maker MFN-2 and decreased expression of miR-15a-5p, Drp1, and PUMA in treatment groups suggesting their cardioprotective role in attenuation of cardiac hypertrophy. An analysis of the docking results shows that ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. CONCLUSION: The physiochemical properties of ES-37 and L-37 predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS. Molecular docking results shows that the polymer ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. Thus, the study validates the role and targeting of miR-15a-5p and MFN-2 in cardiac hypertrophy as well as the therapeutic potential of NAC, ES-37, and L-37 in overcoming oxidative stress and myocardial damage.

6.
Mol Divers ; 27(2): 857-871, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35639226

RESUMO

SARS-CoV-2 is the foremost culprit of the novel coronavirus disease 2019 (nCoV-19 and/or simply COVID-19) and poses a threat to the continued life of humans on the planet and create pandemic issue globally. The 3-chymotrypsin-like protease (MPRO or 3CLPRO) is the crucial protease enzyme of SARS-CoV-2, which directly involves the processing and release of translated non-structural proteins (nsps), and therefore involves the development of virus pathogenesis along with outbreak the forecasting of COVID-19 symptoms. Moreover, SARS-CoV-2 infections can be inhibited by plant-derived chemicals like amentoflavone derivatives, which could be used to develop an anti-COVID-19 drug. Our research study is designed to conduct an in silico analysis on derivatives of amentoflavone (isoginkgetin, putraflavone, 4''''''-methylamentoflavone, bilobetin, ginkgetin, sotetsuflavone, sequoiaflavone, heveaflavone, kayaflavone, and sciadopitysin) for targeting the non-structural protein of SARS-CoV-2, and subsequently further validate to confirm their antiviral ability. To conduct all the in silico experiments with the derivatives of amentoflavone against the MPRO protein, both computerized tools and online servers were applied; notably the software used is UCSF Chimera (version 1.14), PyRx, PyMoL, BIOVIA Discovery Studio tool (version 4.5), YASARA (dynamics simulator), and Cytoscape. Besides, as part of the online tools, the SwissDME and pKCSM were employed. The research study was proposed to implement molecular docking investigations utilizing compounds that were found to be effective against the viral primary protease (MPRO). MPRO protein interacted strongly with 10 amentoflavone derivatives. Every time, amentoflavone compounds outperformed the FDA-approved antiviral medicine that is currently underused in COVID-19 in terms of binding affinity (- 8.9, - 9.4, - 9.7, - 9.1, - 9.3, - 9.0, - 9.7, - 9.3, - 8.8, and - 9.0 kcal/mol, respectively). The best-selected derivatives of amentoflavone also possessed potential results in 100 ns molecular dynamic simulation (MDS) validation. It is conceivable that based on our in silico research these selected amentoflavone derivatives more precisely 4''''''-methylamentoflavone, ginkgetin, and sequoiaflavone have potential for serving as promising lead drugs against SARS-CoV-2 infection. In consequence, it is recommended that additional in vitro as well as in vivo research studies have to be conducted to support the conclusions of this current research study.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia em Rede , Inibidores de Proteases/química , Proteínas não Estruturais Virais , Antivirais/química , Peptídeo Hidrolases/metabolismo
7.
Mol Divers ; 27(3): 1309-1322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35821161

RESUMO

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Simulação de Acoplamento Molecular , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatite C/metabolismo , Hepatócitos/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacologia
8.
Metab Brain Dis ; 38(2): 483-505, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35344129

RESUMO

Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.


Assuntos
Catequina , Mangifera , Camundongos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Mangifera/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Catequina/análise , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Sementes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
9.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049742

RESUMO

An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Variações do Número de Cópias de DNA , Prognóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Biomarcadores , Desenvolvimento de Medicamentos , Encéfalo/metabolismo
10.
Saudi Pharm J ; 31(8): 101681, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576860

RESUMO

Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.

11.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233051

RESUMO

Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.


Assuntos
Proteína HMGB1 , Neoplasias , Apoptose , Proteína HMGB1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53
12.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234860

RESUMO

Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography−mass spectrometry analysis. The Complete Freund's Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01−0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05−0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1ß, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001−0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.


Assuntos
Apocynaceae , Artrite Experimental , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/patologia , Proteína C-Reativa , Catalase , Ciclo-Oxigenase 2 , Flavonoides/uso terapêutico , Adjuvante de Freund , Interleucina-10 , Interleucina-4 , Interleucina-6 , Metotrexato/uso terapêutico , NF-kappa B , Extratos Vegetais/uso terapêutico , Ratos , Fator Reumatoide , Superóxido Dismutase/uso terapêutico , Fator de Necrose Tumoral alfa , Água
13.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209111

RESUMO

The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified-three and two in NIM and PIM, respectively-as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds-dihydrocatalpol and leucosceptoside A-from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus.


Assuntos
Descoberta de Drogas , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Modelos Moleculares , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Scutellaria/química , Fracionamento Químico , Cromatografia Líquida , Descoberta de Drogas/métodos , Ativação Enzimática/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
14.
Saudi Pharm J ; 30(7): 979-1002, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35637849

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a more severe strain of coronavirus (CoV) that was first emerged in China in 2019. Available antiviral drugs could be repurposed and natural compounds with antiviral activity could be safer and cheaper source of medicine for SARS-CoV-2. 78 natural antiviral compounds database was identified from literature and virtual screening technique was applied to identify potential 3-chymotrypsin-like protease (3CLpro) inhibitors. Molecular docking studies were conducted to analyze the main protease (3CLpro) and inhibitors interactions with key residues of active site of target protein (PDB ID: 6LU7), active site constitute the part of active domain I and II of 3CLpro. 10 compounds with highest dock score were subjected to calculate ADMET parameters to figure out drug-likeness. Molecular dynamic (MD) simulation of the selected lead was performed by Amber simulation package to understand the conformational changes in docked complex. MD simulations analysis (RMSD, RMSF, Rg, BF, HBs, and SASA plots) of lead bounded with 3CLpro, hence revealed the important structural turns and twists during MD simulations from 0 to 100 ns. MM-PBSA/GBSA methods has also been applied for the estimation binding free energy (BFE) of the selected lead-complex. The present study has identified lead compound "Forsythoside A" an active extract of Forsythia suspense as SARS-CoV-2 3CLpro inhibitor that can block the viral replication and translation. Structural analysis of target protein and lead compound performed in this study could contribute to the development of potential drug against SARS-CoV-2 infection.

15.
Metab Brain Dis ; 36(6): 1231-1251, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33759084

RESUMO

Cucurbita pepo is used as a vegetable in Pakistan and its seeds are also rich in tocopherol. Data showed the pivotal role of tocopherol in the treatment of Parkinson's disease (PD). The current study was designed to probe into the antiparkinson activity of methanolic extract of C. pepo (MECP) seeds in the haloperidol-induced Parkinson rat model. Behavioral studies showed improvement in motor functions. The increase in catalase, superoxide dismutase, glutathione levels whereas the decreases in the malondialdehyde and nitrite levels were noted in a dose-dependent manner. Acetylcholine-esterase (AchE) activity was increased. Molecular docking results revealed significant binding interaction of selected phytoconstituents within an active site of target protein AchE (PDB ID: 4EY7). Furthermore, α-synuclein was up regulated with down regulation of TNF-α and IL-1ß in the qRT-PCR study. Subsequently, ADMET results on the basis of structure to activity predictions in terms of pharmacokinetics and toxicity estimations show that selected phytochemicals exhibited moderately acceptable properties. These properties add knowledge towards the structural features which could improve the bioavailability of selected phytochemicals before moving towards the initial phase of the drug development. Our integrated drug discovery scheme concluded that C. pepo seeds could ameliorate symptoms of PD and may prove a lead remedy for the treatment of PD.


Assuntos
Antiparkinsonianos/farmacologia , Cucurbita/química , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Cucurbita/metabolismo , Malondialdeído/metabolismo , Ratos , Superóxido Dismutase/metabolismo
16.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884440

RESUMO

Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.


Assuntos
Antivirais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , Alcaloides/química , Alcaloides/uso terapêutico , Antivirais/química , COVID-19/epidemiologia , Surtos de Doenças , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Mutação , Pandemias , SARS-CoV-2/genética , Terpenos/química , Terpenos/uso terapêutico
17.
Phytomedicine ; 133: 155928, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126924

RESUMO

BACKGROUND: The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE: This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS: Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS: Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION: Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.


Assuntos
Anti-Inflamatórios , Antioxidantes , Edema , Hipoglicemiantes , Óleos Voláteis , Scutellaria , Animais , Scutellaria/química , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Edema/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/química , Masculino , Camundongos , Simulação de Acoplamento Molecular , Carragenina , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Aromaterapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química
18.
Curr Med Chem ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39234901

RESUMO

BACKGROUND: Geranyl acetate, a compound found in plant oils, has been studied for its potential effects on renal and cardiovascular ailments. OBJECTIVE: This study aimed to investigate the diuretic and anti-hyperuricemic properties of geranyl acetate in male Wistar rats using a hyperuricemia-induced rat model. METHODS: Molecular docking studies were conducted to assess geranyl acetate's interactions with various targets. in vitro studies were performed to evaluate its scavenging ability and inhibition of xanthine oxidase, urease, and acetylcholinesterase. Subsequently, we administered different doses of geranyl acetate (25, 50, and 100 mg/kg) and a reference drug (furosemide) to the rats to assess their acute and repeated dose diuretic effects over seven days. To understand the diuretic mechanism, we used inhibitors, such as L-- NAME, indomethacin, and atropine, prior to administering geranyl acetate. We also tested the anti-hyperuricemic potential of geranyl acetate on hyperuricemic rats. RESULTS: Molecular docking suggested strong binding between geranyl acetate and nitric oxide synthase. in vitro studies showed significant free radical scavenging activity and and inhibition of acetylcholinesterase, xanthine oxidase, and urease. The 100 mg/kg dose exhibited the most promising diuretic effects, with nitric oxide appearing to influence its action. Uric acid excretion increased at this dose, resembling allopurinol effects. CONCLUSION: Geranyl acetate has demonstrated significant diuretic and anti-hyperuricemic effects, likely influenced by nitric oxide release and inhibition of enzymes, like xanthine oxidase and urease. The findings have suggested potential benefits for individuals with kidney ailments, hypertension, and gout.

19.
Int J Surg ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236089

RESUMO

Stem cell therapy has emerged as a promising approach for regenerative medicine, offering potential treatments for a wide range of diseases and injuries. Although stem cell therapy has great promise, several obstacles have prevented its broad clinical adoption. The effectiveness of therapy has been inhibited by problems such as ineffective stem cell differentiation, low post-transplantation survival rates, and restricted control over stem cell behaviour. Furthermore, the implementation of stem cell therapies is further complicated by the possibility of immunological rejection and cancer. Innovative strategies that provide precise control over stem cell characteristics and maximize their therapeutic potential are desperately needed to overcome these obstacles. Recent studies have shown that the effectiveness of stem cell treatments can be greatly increased by nanoscale advances. By establishing an ideal microenvironment and precisely offering growth factors, nanomaterials such as nanoparticles, nanocomposites, and quantum dots have been demonstrated to improve stem cell differentiation and proliferation. This article provides an overview of the recent trends and applications of nanoscale innovations in the context of stem cell therapy. The recent development of precision medicine has been facilitated by the incorporation of nanotechnology into stem cell therapy. The ability to manipulate stem cells at the nanoscale offers unprecedented control over their behavior and function, opening up exciting possibilities for personalized and highly effective therapeutic interventions. This review paper highlights the recent trends and applications of nanotechnology in advancing stem cell therapy, showcasing its potential to revolutionize regenerative medicine.

20.
Biomed Pharmacother ; 176: 116860, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861855

RESUMO

Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.


Assuntos
Neoplasias , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/análogos & derivados , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA