Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Bioconjug Chem ; 34(10): 1873-1881, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813818

RESUMO

A synthetic platform has been developed that provides access to platinum(IV) prodrugs of highly cytotoxic platinum-acridine anticancer agents and allows them to be incorporated into conjugation-ready prodrug-payloads (PPLs). The PPLs can be conveniently assembled in highly efficient microscale reactions utilizing strain-promoted azide-alkyne cycloaddition chemistry. Model reactions were performed to study the stability of the PPLs in buffers and media and to assess their compatibility with cysteine-maleimide Michael addition chemistry. Amide coupling was a successful strategy to generate a conjugate containing integrin-targeted cyclo[RGDfK] peptide. Reactions with ascorbate were performed to mimic the reductive activation of the PPLs and the latter conjugate, and a cyanine (Cy5) fluorophore-labeled PPL was used to probe the reduction of platinum(IV) in cancer cells by confocal microscopy. The PPL concept introduced here should be evaluated for treating solid tumors with PAs using cancer-targeting vehicles, such as antibody-drug conjugates.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Platina/uso terapêutico , Acridinas/farmacologia , Acridinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
2.
Chemistry ; 27(59): 14681-14689, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34375484

RESUMO

To study the DNA damage caused by a potent platinum-acridine anticancer agent (PA) in cancer cells, an assay based on biorthogonal post-labeling using a click chemistry-enabled, azide-modified derivative (APA) was developed. The method involves biotinylation, affinity capture, and bead-based enrichment of APA-modified genomic DNA. The key steps of the assay were validated and optimized in model duplexes, including full-length plasmids, restriction fragments, and a DNA ladder. Native DNA treated with APA and subsequently subjected to post-labeling with a biotin affinity tag was enzymatically digested and fragments were analyzed by in-line LC-MS and MS/MS. The monofunctional-intercalative adducts formed by APA in 5'-pyrimidine/guanine sequences in double-stranded DNA were quantitatively biotinylated by strain-promoted 1,3-dipolar cycloaddition chemistry. When applied to DNA extracted from A549 lung cancer cells, the assay in combination with qPCR amplification demonstrates that platinum-acridines form adducts in the gene sequences encoding pre-ribosomal RNA, a potential pharmacological target of these agents.


Assuntos
Antineoplásicos , Adutos de DNA , Acridinas , Antineoplásicos/farmacologia , DNA , Genes de RNAr , Platina , Reação em Cadeia da Polimerase , Espectrometria de Massas em Tandem
3.
Angew Chem Int Ed Engl ; 59(49): 21965-21970, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835419

RESUMO

A structure-activity relationship study was performed for a set of rigidified platinum-acridine anticancer agents containing linkers derived from chiral pyrrolidine and piperidine scaffolds. Screening a library of microscale reactions and selected resynthesized compounds in non-small-cell lung cancer (NSCLC) cells showed that cytotoxicities varied by more than three orders of magnitude. A potent hit compound was discovered containing a (R)-N-(piperidin-3-yl) linker (P2-6R), which killed NCI-H460 and A549 lung cancer cells 100 times more effectively than the S enantiomer (P2-6S). P2-6R accumulated in A549 cells significantly faster and produced 50-fold higher DNA adduct levels than P2-6S. Ligand similarity analysis suggests that only module 6R may be compatible with strainless monofunctional intercalative binding. NCI-60 screening and COMPARE analysis highlights the spectrum of activity and potential utility of P2-6R for treating NSCLC and other solid tumors.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Complexos de Coordenação/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Acridinas/química , Acridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , Platina/química , Platina/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
4.
Inorg Chem ; 58(1): 43-46, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30543413

RESUMO

Classical maleimide Michael addition chemistry in conjunction with copper-free click chemistry was investigated as a synthetic strategy to attach cytotoxic platinum-acridine hybrid agents to carrier proteins. The structural integrity and selectivity of the model payloads, which were validated in human serum albumin (HSA) using mass spectrometric analysis and heteronuclear 2D 1H-15N HSQC NMR experiments, may have broad utility for the targeted delivery of highly cytotoxic platinum acridines and other nonclassical platinum containing anticancer agents.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Cisteína/química , Portadores de Fármacos/química , Compostos Organoplatínicos/farmacologia , Albumina Sérica Humana/química , Acridinas/síntese química , Acridinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Química Click , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Estudo de Prova de Conceito , Proteínas Recombinantes/química
5.
Chemistry ; 23(14): 3386-3397, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28122141

RESUMO

Large-pore mesoporous silica nanoparticles (MSN) were prepared and functionalized to serve as a highly robust and biocompatible delivery platform for platinum-acridine (PA) anticancer agents. The material showed a high loading capacity for the dicationic, hydrophilic hybrid agent [PtCl(en)(N-[acridin-9-ylaminoethyl]-N-methylpropionamidine)] dinitrate salt (P1A1) and virtually complete retention of payload at neutral pH in a high-chloride buffer. In acidic media mimicking the pH inside the cell lysosomes, rapid, burst-like release of P1A1 from the nanoparticles is observed. Coating of the materials in phospholipid bilayers resulted in nanoparticles with greatly improved colloidal stability. The lipid and carboxylate-modified nanoparticles containing 40 wt % drug caused S-phase arrest and inhibited cell proliferation in pancreatic cancer cells at submicromolar concentrations similar to carrier-free P1A1. The most striking feature of nanoparticle-delivered P1A1 was that the payload did not escape from the acidified lysosomal vesicles into the cytoplasm, but was shuttled to the nuclear membrane and released into the nucleus.


Assuntos
Acridinas/química , Antineoplásicos/química , Complexos de Coordenação/química , Portadores de Fármacos/química , Nanopartículas/química , Platina , Dióxido de Silício/química , Acridinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Fosfolipídeos/química , Polietilenoglicóis/química , Porosidade , Propriedades de Superfície
6.
J Immunol ; 195(5): 1984-94, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209624

RESUMO

Although T cells play a critical role in protection from viruses, bacteria, and tumors, they also cause autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. Unwanted T cell responses during organ transplant, graft-versus-host disease, and allergies are also major clinical problems. Although drugs are available to suppress unwanted immune responses, they have limited efficacy with serious side effects. Thus, new therapeutics limiting T cell activation, proliferation, and function can make an immediate clinical impact. To identify new suppressors of lymphocyte activation, proliferation, and function, we examined the immunosuppressive activity of gold(I) analogs of platinum-acridine antitumor agents. We found that the gold complex Au-ACRAMTU-PEt3 is a potent suppressor of murine and human T cell activation. Preincubation with Au-ACRAMTU-PEt3 suppresses the proliferation of CD4(+) and CD8(+) T cells at a similar concentration as pharmaceutical grade cyclosporine A. Au-ACRAMTU-PEt3 pretreatment decreases the production of IFN-γ, TNF-α, IL-2, and IL-17 by human and murine CD4(+) and CD8(+) T cells. When mice were treated with Au-ACRAMTU-PEt3 during viral infection, the expansion of virus-specific CD8(+) T cells was decreased 10-fold and viral load was elevated. Taken together, these results demonstrate that Au-ACRAMTU-PEt3 has potent immunosuppressive activity that could be used to suppress immune responses during transplantation and autoimmunity.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Compostos Organoáuricos/farmacologia , Acridinas/química , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Compostos Organoáuricos/química , Oxirredução/efeitos dos fármacos , Platina/química , Ureia/análogos & derivados , Ureia/química , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
7.
Chem Res Toxicol ; 28(11): 2170-8, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26457537

RESUMO

The cellular recognition and processing of monofunctional-intercalative DNA adducts formed by [PtCl(en)(L)](NO3)2 (P1-A1; en = ethane-1,2-diamine; L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine, acridinium cation), a cytotoxic hybrid agent with potent anticancer activity, was studied. Excision of these adducts and subsequent DNA repair synthesis were monitored in plasmids modified with platinum using incubations with mammalian cell-free extract. On the basis of the levels of [α-(32)P]-dCTP incorporation, P1-A1-DNA adducts were rapidly repaired with a rate approximately 8 times faster (t1/2 ≈ 18 min at 30 °C) than the adducts (cross-links) formed by the drug cisplatin. Cellular responses to P1-A1 and cisplatin were also studied in NCI-H460 lung cancer cells using immunocytochemistry in conjunction with confocal fluorescence microscopy. At the same dose, P1-A1, but not cisplatin, elicited a distinct requirement for DNA double-strand break repair and stalled replication fork repair, which caused nuclear fluorescent staining related to high levels of MUS81, a specialized repair endonuclease, and phosphorylated histone protein γ-H2AX. The results confirm previous observations in yeast-based chemical genomics assays. γ-H2AX fluorescence is observed as a large number of discrete foci signaling DNA double-strand breaks, pan-nuclear preapoptotic staining, and unique circularly shaped staining around the nucleoli and nuclear rim. DNA cleavage assays indicate that P1-A1 does not act as a typical topoisomerase poison, suggesting the high level of DNA double-strand breaks in cells is more likely a result of topoisomerase-independent replication fork collapse. Overall, the cellular response to platinum-acridines shares striking similarities with that reported for DNA adduct-forming derivatives of the drug doxorubicin. The results of this study are discussed in light of the cellular mechanism of action of platinum-acridines and their ability to overcome resistance to cisplatin.


Assuntos
Acridinas/toxicidade , Adutos de DNA , Reparo do DNA , Compostos Organoplatínicos/toxicidade , Linhagem Celular Tumoral , DNA/metabolismo , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Humanos
8.
Inorg Chem ; 54(7): 3316-24, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793564

RESUMO

Thiourea-modified 3-chloro-4-fluoroanilino-quinazoline derivatives have been studied as potential receptor-targeted carrier ligands in linear gold(I) complexes. The molecules mimic the epidermal growth factor receptor (EGFR) tyrosine kinase-targeted inhibitor gefitinib. Thiourea groups were either directly attached to quinazoline-C6 (compounds 4, 5, and 7) or linked to this position via a flexible ethylamino chain (compound 9). Compound 7 acts as a thiourea-S/quinazoline-N1 mixed-donor ligand, giving the unexpected dinuclear complex [{Au(µ-7-S,N)}2]X2 (X = Cl(-), SCN(-)) (12a,b) (X-ray crystallography, electrospray mass spectrometry). Derivative 9 forms a stable linear complex, [Au(PEt3)(9-S)](NO3) (13). The biological activity of the carrier ligands and corresponding gold(I) complexes was studied in NCI-H460 and NCI-H1975 lung cancer cells. Compound 9 partially overcomes resistance to gefitinib in NCI-H1975, a lung cancer cell line characterized by a L858R/T790M mutation in EGFR (IC50 values of 1.7 and 30 µM, respectively). The corresponding gold complex (13) maintains activity in the low-micromolar concentration range similar to the metal-free carrier. Compound 9 and the corresponding [Au(PEt3)] complex, 13, inhibit EGFR kinase-mediated phosphorylation with sub-micromolar IC50 values similar to those observed for gefitinib under the same assay conditions. Potential mechanisms of action and reactions in biological media of this new type of hybrid agent, as well as shortcomings of the current design are discussed.


Assuntos
Complexos de Coordenação/química , Ouro/química , Inibidores de Proteínas Quinases/síntese química , Tioureia/química , Afatinib , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Relação Dose-Resposta a Droga , Gefitinibe , Humanos , Concentração Inibidora 50 , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/síntese química , Quinazolinas/farmacologia , Tioureia/síntese química , Tioureia/farmacologia
9.
J Biol Inorg Chem ; 19(3): 415-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24407462

RESUMO

Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide-alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum-acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent.


Assuntos
Antineoplásicos/metabolismo , Ciclo Celular/fisiologia , Química Click/métodos , DNA/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Platina/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/genética , Citometria de Fluxo/métodos , Humanos , Platina/administração & dosagem , Platina/química
10.
Chemistry ; 20(49): 16164-73, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25303639

RESUMO

Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum-acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the prodrug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification.


Assuntos
Antineoplásicos/química , Platina/química , Pró-Fármacos/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Hidrólise , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Platina/metabolismo , Platina/farmacologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Ácido Valproico/química , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia
11.
Chemistry ; 20(49): 16174-87, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25302716

RESUMO

Platinum-acridine hybrid agents show low-nanomolar potency in chemoresistant non-small cell lung cancer (NSCLC), but high systemic toxicity in vivo. To reduce the promiscuous genotoxicity of these agents and improve their pharmacological properties, a modular build-click-screen approach was used to evaluate a small library of twenty hybrid agents containing truncated and extended chromophores of varying basicities. Selected derivatives were resynthesized and tested in five NSCLC cell lines representing large cell, squamous cell, and adenocarcinomas. 7-Aminobenz[c]acridine was identified as a promising scaffold in a hybrid agent (P1-B1) that maintained submicromolar activity in several of the DNA-repair proficient and p53-mutant cancer models, while showing improved tolerability in mice by 32-fold compared to the parent platinum-acridine (P1-A1). The distribution and DNA/RNA adduct levels produced by the acridine- and benz[c]acridine-based analogues in NCI-H460 cells (confocal microscopy, ICP-MS), and their ability to bind G-quadruplex forming DNA sequences (CD spectroscopy, HR-ESMS) were studied. P1-B1 emerges as a less genotoxic, more tolerable, and potentially more target-selective hybrid agent than P1-A1.


Assuntos
Acridinas/química , Antineoplásicos/química , Desenho de Fármacos , Substâncias Intercalantes/química , Compostos Organoplatínicos/química , Acridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Adutos de DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quadruplex G/efeitos dos fármacos , Humanos , Substâncias Intercalantes/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Compostos Organoplatínicos/farmacologia , Relação Estrutura-Atividade
12.
ACS Med Chem Lett ; 14(8): 1122-1128, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583829

RESUMO

Platinum-acridine anticancer agents (PAs) containing acyclic (1 and 3) and heterocyclic (R)-3-aminopiperidine (2) and 2-iminopyrrolidine (4) based linker moieties were studied. Similar to 1, rigidified 2 shows a strong positive correlation between potency and SLC47A1 (multidrug and toxin extrusion protein 1, MATE1) gene expression levels across the NCI-60 panel of cancer cell lines. All derivatives show nanomolar activity in HepG2 (liver), NCI-H460 (lung), and MDA-MB-436 (breast), which express high levels of SLC47A1 (Cancer Cell Line Encyclopedia, CCLE). The PAs are up to 350-fold more potent than cisplatin. In a MATE1 inhibition assay, a significant reduction in activity is observed in the three cancer cell lines (4000-fold lower for HepG2). Molecular docking experiments provide insight into the compatibility of the structurally diverse set of PAs with MATE1-mediated transport. MATE1 is a predictive marker and actionable target that sensitizes cancer cells regardless of the tissue of origin to PAs.

13.
Chemistry ; 18(41): 12926-34, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22987397

RESUMO

Nonclassical platinum-based antitumor agents have shown enormous potential in the treatment of chemoresistant cancers. The design of these agents is based on the hypothesis that platinum-containing pharmacophores that react with nuclear DNA in cancer cells radically differently than the clinical agent cisplatin will produce a unique spectrum of biological activity. One such class of molecules are platinum-acridine hybrid agents derived from the prototypical complex [PtCl(en)(ACRAMTU)](NO(3))(2), en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea ("PT-ACRAMTU"). This article summarizes milestones in the development of these agents and reviews critical key concepts that have guided their design and that of related compounds.


Assuntos
Acridinas/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Cisplatino/química , Cisplatino/farmacologia , Adutos de DNA/química , DNA/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Substâncias Intercalantes/química , Substâncias Intercalantes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organoplatínicos/química , Compostos Organoplatínicos/uso terapêutico , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Estrutura Molecular
14.
ChemMedChem ; 17(18): e202200331, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35902361

RESUMO

NCI-60 growth inhibition and gene expression profiles were analyzed using Pearson correlation and functional enrichment computational tools to demonstrate critical mechanistic differences between a nucleolus-targeting platinum-acridine anticancer agent (PA) and other DNA-directed chemotherapies. The results support prior experimental data and are consistent with DNA being a major target of the hybrid agent based on the negative correlations observed between its potency and expression levels of genes implicated in DNA double-strand break (DSB) repair. Gene ontology terms related to RNA processing, including ribosome biogenesis, are also negatively enriched, suggesting a mechanism by which these processes render cancer cells more resistant to the highly cytotoxic agent. The opposite trend is observed for oxaliplatin and other DNA-targeted drugs. Significant functional interactions exist between genes/gene products involved in ribosome biogenesis and DSB repair, including the ribosomal protein (RPL5)-MDM2-p53 surveillance pathway, as a response to the nucleolar stress produced by PAs.


Assuntos
Antineoplásicos , Platina , Acridinas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Nucléolo Celular/metabolismo , Citotoxinas/metabolismo , Citotoxinas/farmacologia , DNA/metabolismo , Expressão Gênica , Oxaliplatina/farmacologia , Platina/farmacologia , Proteínas Ribossômicas , Proteína Supressora de Tumor p53/metabolismo
15.
J Phys Chem B ; 126(3): 609-619, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35026949

RESUMO

DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. G-quadruplexes have been unambiguously shown to exist both in vitro and in vivo, including in the guanine (G)-rich DNA genes encoding pre-ribosomal RNA (pre-rRNA), which is transcribed in the cell's nucleolus. Recent studies strongly suggest that these DNA sequences ("rDNA"), and the transcribed rRNA, are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis, but the structures of ribosomal G-quadruplexes at atomic resolution are unknown and very little biophysical characterization has been performed on them to date. In the present study, circular dichroism (CD) spectroscopy is used to show that two putative rDNA G-quadruplex sequences, NUC 19P and NUC 23P and their counterpart rRNAs, predominantly adopt parallel topologies, reminiscent of the analogous telomeric quadruplex structures. Based on this information, we modeled parallel topology atomistic structures of the putative ribosomal G-quadruplexes. We then validated and refined the modeled ribosomal G-quadruplex structures using all-atom molecular dynamics (MD) simulations with the CHARMM36 force field in the presence and absence of stabilizing K+. Motivated by preliminary MD simulations of the telomeric parallel G-quadruplex (TEL 24P) in which the K+ ion is expelled, we used updated CHARMM36 force field K+ parameters that were optimized, targeting the data from quantum mechanical calculations and the polarizable Drude model force field. In subsequent MD simulations with optimized CHARMM36 parameters, the K+ ions are predominantly in the G-quadruplex channel and the rDNA G-quadruplexes have more well-defined, predominantly parallel-topology structures as compared to rRNA. In addition, NUC 19P is more structured than NUC 23P, which contains extended loops. Results from this study set the structural foundation for understanding G-quadruplex functions and the design of novel chemotherapeutics against these nucleolar targets and can be readily extended to other DNA and RNA G-quadruplexes.


Assuntos
Quadruplex G , DNA Ribossômico/genética , Humanos , Simulação de Dinâmica Molecular , RNA Ribossômico/genética , Telômero
16.
J Biol Inorg Chem ; 16(3): 373-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21086002

RESUMO

A restriction enzyme cleavage inhibition assay was designed to determine the rates of DNA platination by four non-cross-linking platinum-acridine agents represented by the formula [Pt(am(2))LCl](NO(3))(2), where am is a diamine nonleaving group and L is an acridine derived from the intercalator 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea (ACRAMTU). The formation of monofunctional adducts in the target sequence 5'-CGA was studied in a 40-base-pair probe containing the EcoRI restriction site GAATTC. The time dependence of endonuclease inhibition was quantitatively analyzed by polyacrylamide gel electrophoresis. The formation of monoadducts is approximately 3 times faster with double-stranded DNA than with simple nucleic acid fragments. Compound 1 (am(2) is ethane-1,2-diamine, L is ACRAMTU) reacts with a first-order rate constant of k (obs) = 1.4 ± 0.37 × 10(-4) s(-1) (t (1/2) = 83 ± 22 min). Replacement of the thiourea group in ACRAMTU with an amidine group (compound 2) accelerates the rate by fourfold (k (obs) = 5.7 ± 0.58 × 10(-4) s(-1), t (1/2) = 21 ± 2 min), and introduction of a propane-1,3-diamine nonleaving group results in a 1.5-fold enhancement in reactivity (compound 3, k (obs) = 2.1 ± 0.40 × 10(-4) s(-1), t (1/2) = 55 ± 10 min) compared with the prototype. Derivative 4, containing a 4,9-disubstituted acridine threading intercalator, was the least reactive compound in the series (k (obs) = 1.1 ± 0.40 × 10(-4) s(-1), t (1/2) = 104 ± 38 min). The data suggest a correlation may exist between the binding rates and the biological activity of the compounds. Potential pharmacological advantages of rapid formation of cytotoxic monofunctional adducts over the common purine-purine cross-links are discussed.


Assuntos
Acridinas/química , Adutos de DNA/química , DNA/química , Substâncias Intercalantes/química , Compostos Organoplatínicos/química , Cinética , Estrutura Molecular
17.
Mol Pharm ; 8(5): 1941-54, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21806015

RESUMO

A combination of biophysical, biochemical, and computational techniques was used to delineate mechanistic differences between the platinum-acridine hybrid agent [PtCl(en)(L)](NO(3))(2) (complex 1, en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) and a considerably more potent second-generation analogue containing L' = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine (complex 2). Calculations at the density functional theory level provide a rationale for the binding preference of both complexes for guanine-N7 and the relatively high level of adenine adducts observed for compound 1. A significant rate enhancement is observed for binding of the amidine-based complex 2 with DNA compared with the thiourea-based prototype 1. Studies conducted with chemical probes and on the bending and unwinding of model duplex DNA suggest that adducts of complex 2 perturb B-form DNA more severely than complex 1, however, without denaturing the double strand and significantly less than cisplatin. Circular and linear dichroism spectroscopies and viscosity measurements suggest that subtle differences exist between the intercalation modes and adduct geometries of the two complexes. The adducts formed by complex 2 most efficiently inhibit transcription of the damaged DNA by RNA polymerase II. Not only do complexes 1 and 2 cause less distortion to DNA than cisplatin, they also do not compromise the thermodynamic stability of the modified duplex. This leads to a decreased or negligible affinity of HMG domain proteins for the adducts formed by either Pt-acridine complex. In a DNA repair synthesis assay the lesions formed by complex 2 were repaired less efficiently than those formed by complex 1. These significant differences in DNA adduct formation, structure, and recognition between the two acridine complexes and cisplatin help to elucidate why compound 2 is highly active in cisplatin-resistant, repair proficient cancer cell lines.


Assuntos
Acridinas/química , Amidinas/química , Antineoplásicos/química , Adutos de DNA/química , Reparo do DNA/efeitos dos fármacos , DNA/metabolismo , Compostos Organoplatínicos/química , Acridinas/metabolismo , Acridinas/farmacologia , Amidinas/metabolismo , Amidinas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cisplatino/análogos & derivados , Cisplatino/química , Cisplatino/metabolismo , Cisplatino/farmacologia , DNA/química , DNA de Forma B/química , DNA de Forma B/metabolismo , Desenho de Fármacos , Proteína HMGB1/metabolismo , Células HeLa , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Cinética , Conformação de Ácido Nucleico/efeitos dos fármacos , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacologia , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Tioureia/química , Tioureia/metabolismo , Tioureia/farmacologia , Transcrição Gênica/efeitos dos fármacos
18.
ChemMedChem ; 16(2): 412-419, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32975041

RESUMO

Liposomal formulations have been developed for a highly cytotoxic platinum-acridine agent, [PtCl(pn)(C18 H21 N4 )](NO3 )2 (PA, pn=propane-1,3-diamine), and fully characterized. Nanoliposomes consisting of hydrogenated soybean phosphatidylcholine (HSPC), 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and polyethylene glycol-2000-distearoylphosphatidylethanolamine (DSPE-mPEG2k ) were able to stably encapsulate PA at payload-to-lipid ratios of 2-20 %. The fusogenic properties of the liposomes promote efficient cellular uptake of PA across the plasma membrane, which results in vesicular transport of payload to the nucleus in cultured lung cancer cells. Unencapsulated PA and one of the newly designed liposomal formulations show promising tumor growth inhibition in tumor xenografts derived from A549 lung adenocarcinoma cells of 76 % and 72 %, respectively. Cisplatin showed no significant efficacy at a 10-fold higher dose. These findings underscore the utility of platinum-acridine agents for treating aggressive, chemoresistant forms of cancer and validate nanoliposomes as a biocompatible, expandable platform for their intravenous delivery and other potential routes of administration.


Assuntos
Acridinas/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Modelos Biológicos , Compostos Organoplatínicos/farmacologia , Platina/farmacologia , Células A549 , Acridinas/química , Adenocarcinoma de Pulmão/patologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lipossomos/química , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Platina/química
19.
Chem Res Toxicol ; 23(7): 1148-50, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20578739

RESUMO

Me-lex(py/py), an adenine-N3-selective alkylating agent, and the reversible minor-groove binder netropsin were used to probe the formation of unusual minor-groove adducts by the cytotoxic hybrid agent PT-ACRAMTU ([PtCl(en)(ACRAMTU)](NO(3))(2); en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea). PT-ACRAMTU was found by chemical footprinting to inhibit specific Me-lex-mediated DNA cleavage at several adenine sites but not at nonspecific guanine, which is consistent with the platination of adenine-N3. In a cell proliferation assay, a significant decrease in cytotoxicity was observed for PT-ACRAMTU, when cancer cells were pretreated with netropsin, suggesting that minor-groove adducts in cellular DNA contribute to the biological activity of the hybrid agent.


Assuntos
Adenina/química , Alquilantes/toxicidade , Adutos de DNA/química , Compostos Organoplatínicos/química , Alquilantes/química , Clivagem do DNA/efeitos dos fármacos , Netropsina/farmacologia , Compostos Organoplatínicos/toxicidade
20.
Sci Rep ; 10(1): 15201, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939009

RESUMO

Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combatting aggressive forms of cancer. To gain insight into the cellular mechanism of a potent platinum-acridine anticancer agent (compound 1), a correlation analysis of NCI-60 compound screening results and gene expression profiles was performed. A plasma membrane transporter, the solute carrier (SLC) human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), emerged as the dominant predictor of cancer cell chemosensitivity to the hybrid agent (Pearson correlation analysis, p < 10-5) across a wide range of tissues of origin. The crucial role of hMATE1 was validated in lung adenocarcinoma cells (A549), which expresses high levels of the membrane transporter, using transporter inhibition assays and transient knockdown of the SLC47A1 gene, in conjunction with quantification of intracellular accumulation of compound 1 and cell viability screening. Preliminary data also show that HCT-116 colon cancer cells, in which hMATE1 is epigenetically repressed, can be sensitized to compound 1 by priming the cells with the drugs EPZ-6438 (tazemetostat) and EED226. Collectively, these results suggest that hMATE1 may have applications as a pan-cancer molecular marker to identify and target tumors that are likely to respond to platinum-acridines.


Assuntos
Acridinas/química , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Proteínas de Transporte de Cátions Orgânicos/genética , Compostos Organoplatínicos/farmacologia , Platina/química , Piridonas/farmacologia , Sulfonas/farmacologia , Triazóis/farmacologia , Células A549 , Antineoplásicos/química , Compostos de Bifenilo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Estrutura Molecular , Morfolinas , Compostos Organoplatínicos/química , Pirimetamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA