RESUMO
Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.
Assuntos
Inteligência Artificial , Biologia Computacional , Modelos Animais de Doenças , Atrofia Muscular Espinal , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Animais , Camundongos , Humanos , Biologia Computacional/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Aprendizado de Máquina , Algoritmos , Regulação da Expressão Gênica/genéticaRESUMO
Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.
Assuntos
Tratamento Farmacológico da COVID-19 , Interferon-alfa/farmacologia , SARS-CoV-2/efeitos dos fármacos , Transcriptoma , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Clonagem Molecular , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Camundongos , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/farmacologia , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Transdução de Sinais , Células VeroRESUMO
OBJECTIVE: Endometrial cancer (EndoCA) is the most common gynecologic cancer and incidence and mortality rate continue to increase. Despite well-characterized knowledge of EndoCA-defining mutations, no effective diagnostic or screening tests exist. To lay the foundation for testing development, our study focused on defining the prevalence of somatic mutations present in non-cancerous uterine tissue. METHODS: We obtained ≥8 uterine samplings, including separate endometrial and myometrial layers, from each of 22 women undergoing hysterectomy for non-cancer conditions. We ultra-deep sequenced (>2000× coverage) samples using a 125 cancer-relevant gene panel. RESULTS: All women harbored complex mutation patterns. In total, 308 somatic mutations were identified with mutant allele frequencies ranging up to 96.0%. These encompassed 56 unique mutations from 24 genes. The majority of samples possessed predicted functional cancer mutations but curiously no growth advantage over non-functional mutations was detected. Functional mutations were enriched with increasing patient age (p = 0.045) and BMI (p = 0.0007) and in endometrial versus myometrial layers (68% vs 39%, p = 0.0002). Finally, while the somatic mutation landscape shared similar mutation prevalence in key TCGA-defined EndoCA genes, notably PIK3CA, significant differences were identified, including NOTCH1 (77% vs 10%), PTEN (9% vs 61%), TP53 (0% vs 37%) and CTNNB1 (0% vs 26%). CONCLUSIONS: An important caveat for future liquid biopsy/DNA-based cancer diagnostics is the repertoire of shared and distinct mutation profiles between histologically unremarkable and EndoCA tissues. The lack of selection pressure between functional and non-functional mutations in histologically unremarkable uterine tissue may offer a glimpse into an unrecognized EndoCA protective mechanism.
Assuntos
Endométrio , Mutação , Humanos , Feminino , Pessoa de Meia-Idade , Endométrio/patologia , Endométrio/metabolismo , Idoso , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Adulto , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Hibernation enables many species of the mammalian kingdom to overcome periods of harsh environmental conditions. During this physically inactive state metabolic rate and body temperature are drastically downregulated, thereby reducing energy requirements (torpor) also over shorter time periods. Since blood cells reflect the organism´s current condition, it was suggested that transcriptomic alterations in blood cells mirror the torpor-associated physiological state. Transcriptomics on blood cells of torpid and non-torpid Djungarian hamsters and QIAGEN Ingenuity Pathway Analysis (IPA) revealed key target molecules (TMIPA), which were subjected to a comparative literature analysis on transcriptomic alterations during torpor/hibernation in other mammals. Gene expression similarities were identified in 148 TMIPA during torpor nadir among various organs and phylogenetically different mammalian species. Based on TMIPA, IPA network analyses corresponded with described inhibitions of basic cellular mechanisms and immune system-associated processes in torpid mammals. Moreover, protection against damage to the heart, kidney, and liver was deduced from this gene expression pattern in blood cells. This study shows that blood cell transcriptomics can reflect the general physiological state during torpor nadir. Furthermore, the understanding of molecular processes for torpor initiation and organ preservation may have beneficial implications for humans in extremely challenging environments, such as in medical intensive care units and in space.
Assuntos
Hibernação , Torpor , Cricetinae , Humanos , Animais , Phodopus/fisiologia , Hibernação/genética , Transcriptoma , Torpor/fisiologia , Mamíferos/fisiologiaRESUMO
BACKGROUND: Leveraging previously identified viral interactions with human host proteins, we apply a machine learning-based approach to connect SARS-CoV-2 viral proteins to relevant host biological functions, diseases, and pathways in a large-scale knowledge graph derived from the biomedical literature. Our goal is to explore how SARS-CoV-2 could interfere with various host cell functions, and to identify drug targets amongst the host genes that could potentially be modulated against COVID-19 by repurposing existing drugs. The machine learning model employed here involves gene embeddings that leverage causal gene expression signatures curated from literature. In contrast to other network-based approaches for drug repurposing, our approach explicitly takes the direction of effects into account, distinguishing between activation and inhibition. RESULTS: We have constructed 70 networks connecting SARS-CoV-2 viral proteins to various biological functions, diseases, and pathways reflecting viral biology, clinical observations, and co-morbidities in the context of COVID-19. Results are presented in the form of interactive network visualizations through a web interface, the Coronavirus Network Explorer (CNE), that allows exploration of underlying experimental evidence. We find that existing drugs targeting genes in those networks are strongly enriched in the set of drugs that are already in clinical trials against COVID-19. CONCLUSIONS: The approach presented here can identify biologically plausible hypotheses for COVID-19 pathogenesis, explicitly connected to the immunological, virological and pathological observations seen in SARS-CoV-2 infected patients. The discovery of repurposable drugs is driven by prior knowledge of relevant functional endpoints that reflect known viral biology or clinical observations, therefore suggesting potential mechanisms of action. We believe that the CNE offers relevant insights that go beyond more conventional network approaches, and can be a valuable tool for drug repurposing. The CNE is available at https://digitalinsights.qiagen.com/coronavirus-network-explorer .
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Reconhecimento Automatizado de Padrão , TranscriptomaRESUMO
The continuing spread of HIV/AIDS is predominantly fueled by sexual exposure to HIV-contaminated semen. Seminal plasma (SP), the liquid portion of semen, harbors a variety of factors that may favor HIV transmission by facilitating viral entry into host cells, eliciting the production of proinflammatory cytokines, and enhancing the translocation of HIV across the genital epithelium. One important and abundant class of factors in SP is extracellular vesicles (EVs), which, in general, are important intercellular signal transducers. Although numerous studies have characterized blood plasma-derived EVs from both uninfected and HIV-infected individuals, little is known about the properties of EVs from the semen of HIV-infected individuals. We report here that fractionated SP enriched for EVs from HIV-infected men induces potent transcriptional responses in epithelial and stromal cells that interface with the luminal contents of the female reproductive tract. Semen EV fractions from acutely infected individuals induced a more proinflammatory signature than those from uninfected individuals. This was not associated with any observable differences in the surface phenotypes of the vesicles. However, microRNA (miRNA) expression profiling analysis revealed that EV fractions from infected individuals exhibit a broader and more diverse profile than those from uninfected individuals. Taken together, our data suggest that SP EVs from HIV-infected individuals exhibit unique miRNA signatures and exert potent proinflammatory transcriptional changes in cells of the female reproductive tract, which may facilitate HIV transmission.IMPORTANCE Seminal plasma (SP), the major vehicle for HIV, can modulate HIV transmission risk through a variety of mechanisms. Extracellular vesicles (EVs) are extremely abundant in semen, and because they play a key role in intercellular communication pathways and immune regulation, they may impact the likelihood of HIV transmission. However, little is known about the properties and signaling effects of SP-derived EVs in the context of HIV transmission. Here, we conduct a phenotypic, transcriptomic, and functional characterization of SP and SP-derived EVs from uninfected and HIV-infected men. We find that both SP and its associated EVs elicit potent proinflammatory transcriptional responses in cells that line the genital tract. EVs from HIV-infected men exhibit a more diverse repertoire of miRNAs than EVs from uninfected men. Our findings suggest that EVs from the semen of HIV-infected men may significantly impact the likelihood of HIV transmission through multiple mechanisms.
Assuntos
Vesículas Extracelulares/genética , MicroRNAs/genética , Sêmen/metabolismo , Adulto , Estudos de Coortes , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Genitália Feminina , Infecções por HIV/imunologia , HIV-1/fisiologia , Humanos , Masculino , Comportamento Sexual , Transcriptoma/genéticaRESUMO
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 7 million people in Latin American areas of endemicity. About 30% of infected patients will develop chronic Chagas cardiomyopathy (CCC), an inflammatory cardiomyopathy characterized by hypertrophy, fibrosis, and myocarditis. Further studies are necessary to understand the molecular mechanisms of disease progression. Transcriptome analysis has been increasingly used to identify molecular changes associated with disease outcomes. We thus assessed the whole-blood transcriptome of patients with Chagas disease. Microarray analysis was performed on blood samples from 150 subjects, of whom 30 were uninfected control patients and 120 had Chagas disease (1 group had asymptomatic disease, and 2 groups had CCC with either a preserved or reduced left ventricular ejection fraction [LVEF]). Each Chagas disease group displayed distinct gene expression and functional pathway profiles. The most different expression patterns were between CCC groups with a preserved or reduced LVEF. A more stringent analysis indicated that 27 differentially expressed genes, particularly those related to natural killer (NK)/CD8+ T-cell cytotoxicity, separated the 2 groups. NK/CD8+ T-cell cytotoxicity could play a role in determining Chagas disease progression. Understanding genes associated with disease may lead to improved insight into CCC pathogenesis and the identification of prognostic factors for CCC progression.
Assuntos
Cardiomiopatia Chagásica/genética , Disfunção Ventricular/genética , Linfócitos T CD8-Positivos/imunologia , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/fisiopatologia , Citotoxicidade Imunológica/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células Matadoras Naturais/imunologia , Análise em Microsséries , Pessoa de Meia-Idade , Miocárdio/patologia , Reação em Cadeia da Polimerase em Tempo Real , Disfunção Ventricular/sangue , Disfunção Ventricular/parasitologiaRESUMO
OBJECTIVE: High-grade serous ovarian cancer (HGSOC) that is resistant to platinum-based chemotherapy has a particularly poor prognosis. Response to platinum has both prognostic survival value and dictates secondary treatment strategies. Using transcriptome analysis, we sought to identify differentially expressed genes/pathways based on a tumor's platinum response for discovering novel predictive biomarkers. METHODS: Seven primary HGSOC tumor samples, representing two extremes of platinum sensitivity/timing of disease recurrence, were analyzed by RNA-Seq, Ingenuity Pathways Analysis (IPA) and Upstream Regulator Analysis (URA), and used to explore differentially expressed genes and prevalent molecular and cellular processes. Progression-free and overall survival (PFS, OS) was estimated using the Kaplan-Meier method in two different sample sets including GEO and TCGA data sets. RESULTS: IPA and URA highlighted an IRF1-driven transcriptional program (P=0.0017; z-score of 3.091) in the platinum sensitive improved PFS group. QRT-PCR analysis of 31 HGSOC samples demonstrated a significant difference in PFS between low and high IRF1 expression groups (P=0.048) and between groups that were platinum sensitive versus not (P=0.016). In a larger validation data set, increased levels of IRF1 were associated with both increased PFS (P=0.043) and OS (P=0.019) and the effect on OS was independent of debulking status (optimal debulking, P=0.025; suboptimal, P=0.041). CONCLUSION: Transcriptome analysis identifies IRF1, a transcription factor that functions both in immune regulation and as a tumor suppressor, as being associated with platinum sensitivity and an independent predictor of both PFS and OS in HGSOC.
Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Cistadenocarcinoma Seroso/mortalidade , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/fisiologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/mortalidade , Prognóstico , Taxa de SobrevidaRESUMO
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for innovative therapies with high genetic barriers to resistance. Therefore, there is pronounced interest in identifying new pharmacological targets in the SARS-CoV-2 viral life cycle. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. In this study, we investigate the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). We show that PAV-104 inhibits >99% of infection with diverse SARS-CoV-2 variants in immortalized AECs, and in primary human AECs cultured at the air-liquid interface (ALI) to represent the lung microenvironment in vivo. Our data demonstrate that PAV-104 inhibits SARS-CoV-2 production without affecting viral entry, mRNA transcription, or protein synthesis. PAV-104 interacts with SARS-CoV-2 nucleocapsid (N) and interferes with its oligomerization, blocking particle assembly. Transcriptomic analysis reveals that PAV-104 reverses SARS-CoV-2 induction of the type-I interferon response and the maturation of nucleoprotein signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19 with a mechanism of action that is distinct from existing clinical management approaches.
Assuntos
Antivirais , Células Epiteliais , SARS-CoV-2 , Replicação Viral , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Células Epiteliais/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Antivirais/farmacologia , Montagem de Vírus/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19RESUMO
Small intestine (SI) maturation during early life is pivotal in preventing the onset of gut diseases. In this study we interrogated the milestones of SI development by gene expression profiling and ingenuity pathway analyses. We identified a set of cytokines as main regulators of changes observed across different developmental stages. Upon cytokines stimulation, with IFNγ as the most contributing factor, human fetal organoids (HFOs) increase brush border gene expression and enzyme activity as well as trans-epithelial electrical resistance. Electron microscopy revealed developed brush border and loss of fetal cell characteristics in HFOs upon cytokine stimulation. We identified T cells as major source of IFNγ production in the fetal SI lamina propria. Co-culture of HFOs with T cells recapitulated the major effects of cytokine stimulation. Our findings underline pro-inflammatory cytokines derived from T cells as pivotal factors inducing functional SI maturation in vivo and capable of modulating the barrier maturation of HFOs in vitro.
RESUMO
Background: Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods: We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results: Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions: Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Lesões do Sistema Vascular , Humanos , Glicocálix/metabolismo , Células Endoteliais , Sindecana-1/metabolismo , Lesões do Sistema Vascular/metabolismo , Ácido Hialurônico/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Síndrome do Desconforto Respiratório/tratamento farmacológico , Perfilação da Expressão GênicaRESUMO
Introduction: Endocannabinoids in COVID-19 have immunomodulatory and anti-inflammatory properties but the functional role and the regulation of endocannabinoid signaling in this pandemic disorder is controversial. To exercise their biologic function, endocannabinoids need to travel across the intercellular space and within the blood stream to reach their target cells. How the lipophilic endocannabinoids are transported in the vascular system and how these hydrophobic compounds cross cell membranes is still unclear. Extracellular vesicles (EVs) are released and incorporated by many cell types including immune cells. EVs are small lipid-membrane covered particles and contain RNA, lipids and proteins. They play an important role in intercellular communication by transporting these signaling molecules from their cells of origin to specific target cells. EVs may represent ideal transport vehicles for lipophilic signaling molecules like endocannabinoids and this effect could also be evident in COVID-19. Materials and Methods: We measured the endocannabinoids anandamide, 2-AG, SEA, PEA and OEA in patients with COVID-19 in EVs and plasma. RNA sequencing of microRNAs (miRNAs) derived from EVs (EV-miRNAs) and mRNA transcripts from blood cells was used for the construction of signaling networks reflecting endocannabinoid and miRNA communication by EVs to target immune cells. Results: With the exception of anandamide, endocannabinoid concentrations were significantly enriched in EVs in comparison to plasma and increased with disease severity. No enrichment in EVs was seen for the more hydrophilic steroid hormones cortisol and testosterone. High EV-endocannabinoid concentrations were associated with downregulation of CNR2 (CB2) by upregulated EV-miRNA miR-146a-5p and upregulation of MGLL by downregulated EV-miR-199a-5p and EV-miR-370-5p suggesting counterregulatory effects. In contrast, low EV-levels of anandamide were associated with upregulation of CNR1 by downregulation of EV-miR-30c-5p and miR-26a-5p along with inhibition of FAAH. Immunologically active molecules in immune cells regulated by endocannabinoid signaling included VEGFA, GNAI2, IGF1, BDNF, IGF1R and CREB1 and CCND1 among others. Discussion and Conclusions: EVs carry immunologically functional endocannabinoids in COVID-19 along with miRNAs which may regulate the expression of mRNA transcripts involved in the regulation of endocannabinoid signaling and metabolism. This mechanism could fine-tune and adapt endocannabinoid effects in recipient cells in relationship to the present biological context.
RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. In this study, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including immortalized AECs and primary AECs cultured at the air-liquid interface. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an angiotensin-converting enzyme 2 (ACE2)-dependent manner, enhancing the binding of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs, including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.
Assuntos
COVID-19 , Galectinas , SARS-CoV-2 , Replicação Viral , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/metabolismo , COVID-19/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Galectinas/metabolismo , Inflamação/metabolismo , Inflamação/virologia , SARS-CoV-2/fisiologiaRESUMO
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for novel therapies with high genetic barriers to resistance. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. Here, we investigated the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). Our data demonstrate that PAV-104 inhibited > 99% of infection with diverse SARS-CoV-2 variants in primary and immortalized human AECs. PAV-104 suppressed SARS-CoV-2 production without affecting viral entry or protein synthesis. PAV-104 interacted with SARS-CoV-2 nucleocapsid (N) and interfered with its oligomerization, blocking particle assembly. Transcriptomic analysis revealed that PAV-104 reversed SARS-CoV-2 induction of the Type-I interferon response and the 'maturation of nucleoprotein' signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19.
RESUMO
Motivation: We explore the use of literature-curated signed causal gene expression and gene-function relationships to construct unsupervised embeddings of genes, biological functions and diseases. Our goal is to prioritize and predict activating and inhibiting functional associations of genes and to discover hidden relationships between functions. As an application, we are particularly interested in the automatic construction of networks that capture relevant biology in a given disease context. Results: We evaluated several unsupervised gene embedding models leveraging literature-curated signed causal gene expression findings. Using linear regression, we show that, based on these gene embeddings, gene-function relationships can be predicted with about 95% precision for the highest scoring genes. Function embedding vectors, derived from parameters of the linear regression model, allow inference of relationships between different functions or diseases. We show for several diseases that gene and function embeddings can be used to recover key drivers of pathogenesis, as well as underlying cellular and physiological processes. These results are presented as disease-centric networks of genes and functions. To illustrate the applicability of our approach to other machine learning tasks, we also computed embeddings for drug molecules, which were then tested using a simple neural network to predict drug-disease associations. Availability and implementation: Python implementations of the gene and function embedding algorithms operating on a subset of our literature-curated content as well as other code used for this paper are made available as part of the Supplementary data. Supplementary information: Supplementary data are available at Bioinformatics Advances online.
RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induce the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection. Importance: COVID-19 continues to have a major global health and economic impact. Identifying host molecular determinants that modulate SARS-CoV-2 infectivity and pathology is a key step in discovering novel therapeutic approaches for COVID-19. Several recent studies have revealed that plasma concentrations of the human ß-galactoside-binding protein galectin-9 (Gal-9) are highly elevated in COVID-19 patients. In this study, we investigated the impact of Gal-9 on SARS-CoV-2 pathogenesis ex vivo in airway epithelial cells (AECs), the critical initial targets of SARS-CoV-2 infection. Our findings reveal that Gal-9 potently enhances SARS-CoV-2 replication in AECs, interacting with glycans to enhance the binding between viral particles and entry receptors on the target cell surface. Moreover, we determined that Gal-9 accelerates and exacerbates several virus-induced pro-inflammatory programs in AECs that are established signature characteristics of COVID-19 disease and SARS-CoV-2-induced acute respiratory distress syndrome (ARDS). Our findings suggest that Gal-9 is a promising pharmacological target for COVID-19 therapies.
RESUMO
Background: Extracellular vesicles (EVs) are mediators of cell-to-cell communication in inflammatory lung diseases. They function as carriers for miRNAs which regulate mRNA transcripts and signaling pathways after uptake into recipient cells. We investigated whether miRNAs associated with circulating EVs regulate immunologic processes in COVID-19. Methods: We prospectively studied 20 symptomatic patients with COVID-19 pneumonia, 20 mechanically ventilated patients with severe COVID-19 (severe acute respiratory corona virus-2 syndrome, ARDS) and 20 healthy controls. EVs were isolated by precipitation, total RNA was extracted, profiled by small RNA sequencing and evaluated by differential gene expression analysis (DGE). Differentially regulated miRNAs between groups were bioinformatically analyzed, mRNA target transcripts identified and signaling networks constructed, thereby comparing COVID-19 pneumonia to the healthy state and pneumonia to severe COVID-19 ARDS. Results: DGE revealed 43 significantly and differentially expressed miRNAs (25 downregulated) in COVID-19 pneumonia when compared to controls, and 20 miRNAs (15 downregulated) in COVID-19 ARDS patients in comparison to those with COVID-19 pneumonia. Network analysis for comparison of COVID-19 pneumonia to healthy controls showed upregulated miR-3168 (log2FC=2.28, padjusted<0.001), among others, targeting interleukin-6 (IL6) (25.1, 15.2 - 88.2 pg/ml in COVID-19 pneumonia) and OR52N2, an olfactory smell receptor in the nasal epithelium. In contrast, miR-3168 was significantly downregulated in COVID-19 ARDS (log2FC=-2.13, padjusted=0.003) and targeted interleukin-8 (CXCL8) in a completely activated network. Toll-like receptor 4 (TLR4) was inhibited in COVID-19 pneumonia by miR-146a-5p and upregulated in ARDS by let-7e-5p. Conclusion: EV-derived miRNAs might have important regulative functions in the pathophysiology of COVID-19: CXCL8 regulates neutrophil recruitment into the lung causing epithelial damage whereas activated TLR4, to which SARS-CoV-2 spike protein binds strongly, increases cell surface ACE2 expression and destroys type II alveolar cells that secrete pulmonary surfactants; both resulting in pulmonary-capillary leakage and ARDS. These miRNAs may serve as biomarkers or as possible therapeutic targets.
Assuntos
Biomarcadores/sangue , COVID-19/imunologia , Vesículas Extracelulares/imunologia , MicroRNAs/imunologia , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/imunologia , Pneumonia/patologia , SARS-CoV-2 , Transdução de Sinais/imunologiaRESUMO
The most common scoring system for critically ill patients is the Sequential Organ Failure Assessment (SOFA) score. Little is known about specific molecular signaling networks underlying the SOFA criteria. We characterized these networks and identified specific key regulatory molecules. We prospectively studied seven patients with sepsis and six controls with high-throughput RNA sequencing (RNAseq). Quantitative reverse transcription PCR (RT-qPCR) confirmation was performed in a second independent cohort. Differentially and significantly expressed miRNAs and their target mRNA transcripts were filtered for admission SOFA criteria and marker RNAs for the respective criteria identified. We bioinformatically constructed molecular signaling networks specifically reflecting these criteria followed by RT-qPCR confirmation of RNAs with important regulatory functions in the networks in the second cohort. RNAseq identified 82 miRNAs (45% upregulated) and 3254 mRNAs (50% upregulated) differentially expressed between sepsis patients and controls. Bioinformatic analysis characterized 6 miRNAs and 76 mRNA target transcripts specific for the SOFA criteria. RT-qPCR validated miRNA and mRNAs included IGFBP2 (respiratory system); MMP9 and PDE4B (nervous system); PPARG (cardiovascular system); AKR1B1, ANXA1, and LNC2/NGAL (acute kidney injury); GFER/ALR (liver); and miR-30c-3p (coagulopathy). There are specific canonical networks underlying the SOFA score. Key regulatory miRNA and mRNA transcripts support its biologic validity.
RESUMO
The circadian clock component NR1D1 (REVERBα) is considered a dominant regulator of lipid metabolism, with global Nr1d1 deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is not observed under adipocyte-selective deletion (Nr1d1Flox2-6:AdipoqCre), and transcriptional profiling demonstrates that, under basal conditions, direct targets of NR1D1 regulation are limited, and include the circadian clock and collagen dynamics. Under high-fat diet (HFD) feeding, Nr1d1Flox2-6:AdipoqCre mice do manifest profound obesity, yet without the accompanying WAT inflammation and fibrosis exhibited by controls. Integration of the WAT NR1D1 cistrome with differential gene expression reveals broad control of metabolic processes by NR1D1 which is unmasked in the obese state. Adipocyte NR1D1 does not drive an anticipatory daily rhythm in WAT lipogenesis, but rather modulates WAT activity in response to alterations in metabolic state. Importantly, NR1D1 action in adipocytes is critical to the development of obesity-related WAT pathology and insulin resistance.