Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Neurosci ; 14: 90, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23981345

RESUMO

BACKGROUND: Drugs targeting insomnia ideally promote sleep throughout the night, maintain normal sleep architecture, and are devoid of residual effects associated with morning sedation. These features of an ideal compound are not only dependent upon pharmacokinetics, receptor binding kinetics, potency and pharmacodynamic activity, but also upon a compound's mechanism of action. RESULTS: Dual orexin receptor antagonists (DORAs) block the arousal-promoting activity of orexin peptides and, as demonstrated in the current work, exhibit an efficacy signal window dependent upon oscillating levels of endogenous orexin neuropeptide. Sleep efficacy of structurally diverse DORAs in rat and dog was achieved at plasma exposures corresponding to orexin 2 receptor (OX2R) occupancies in the range of 65 to 80%. In rats, the time course of OX2R occupancy was dependent upon receptor binding kinetics and was tightly correlated with the timing of active wake reduction. In rhesus monkeys, direct comparison of DORA-22 with GABA-A modulators at similar sleep-inducing doses revealed that diazepam produced next-day residual sleep and both diazepam and eszopiclone induced next-day cognitive deficits. In stark contrast, DORA-22 did not produce residual effects. Furthermore, DORA-22 evoked only minimal changes in quantitative electroencephalogram (qEEG) activity during the normal resting phase in contrast to GABA-A modulators which induced substantial qEEG changes. CONCLUSION: The higher levels of receptor occupancy necessary for DORA efficacy require a plasma concentration profile sufficient to maintain sleep for the duration of the resting period. DORAs, with a half-life exceeding 8 h in humans, are expected to fulfill this requirement as exposures drop to sub-threshold receptor occupancy levels prior to the wake period, potentially avoiding next-day residual effects at therapeutic doses.


Assuntos
Azepinas/farmacocinética , Antagonistas dos Receptores de Orexina , Sono/efeitos dos fármacos , Triazóis/farmacocinética , Animais , Cães , Eletroencefalografia , Feminino , Humanos , Imunoensaio , Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/líquido cefalorraquidiano , Orexinas , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Sono/fisiologia
2.
J Neurogenet ; 25(4): 167-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22091728

RESUMO

Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, the authors completed large-scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of rapid eye movement (REM), non-REM, sleep bout duration, and sleep fragmentation. Here the authors describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small-molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3) (wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4) (wake promotion), dopamine receptor D5 subunit (Drd5) (sleep induction), serotonin 1D receptor (Htr1d) (altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r) (light sleep promotion and reduction of deep sleep), and calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i) (increased bout duration of slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities.


Assuntos
Cruzamentos Genéticos , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/genética , Sono/efeitos dos fármacos , Sono/genética , Animais , Canais de Cálcio Tipo N , Canais de Cálcio Tipo P/genética , Canais de Cálcio Tipo Q/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M3/genética , Receptores de Dopamina D5/genética , Receptores Nicotínicos/genética , Transtornos do Sono-Vigília/metabolismo
3.
Front Behav Neurosci ; 8: 182, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904334

RESUMO

The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs) effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem) and antihistamine (diphenhydramine) administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram (EMG), electrooculogram (EOG), and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night) and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus) or presented randomly (neutral stimulus). Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic) loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in the dog thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

4.
Sci Transl Med ; 5(179): 179ra44, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552372

RESUMO

Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use.


Assuntos
Cognição/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Sono/efeitos dos fármacos , Administração Oral , Animais , Atenção/efeitos dos fármacos , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Diazepam/administração & dosagem , Diazepam/farmacologia , Zopiclona , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Macaca mulatta , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores de Orexina , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Reconhecimento Psicológico , Análise e Desempenho de Tarefas , Fatores de Tempo , Triazóis/administração & dosagem , Triazóis/farmacologia , Zolpidem , Ácido gama-Aminobutírico/metabolismo
5.
ChemMedChem ; 7(1): 123-33, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-21916012

RESUMO

TWIK-related acid-sensitive K(+) (K(2P) 9.1, TASK-3) ion channels have the capacity to regulate the activity of neuronal pathways by influencing the resting membrane potential of neurons on which they are expressed. The central nervous system (CNS) expression of these channels suggests potential roles in neurologic disorders, and it is believed that the development of TASK-3 antagonists could lead to the therapeutic treatment of a number of neurological conditions. While a therapeutic potential for TASK-3 channel modulation exists, there are only a few documented examples of potent and selective small-molecule channel blockers. Herein, we describe the discovery and lead optimization efforts for a novel series of TASK-3 channel antagonists based on a 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine high-throughput screening lead from which a subseries of potent and selective inhibitors were identified. One compound was profiled in detail with respect to its physical properties and demonstrated pharmacological target engagement as indicated by its ability to modulate sleep architecture in rodent electroencephalogram (EEG) telemetry models.


Assuntos
Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA