Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 276: 14-21, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796896

RESUMO

Anthropogenic impacts, such as noise pollution from transportation networks, can serve as stressors to some wildlife species. For example, increased exposure to traffic noise has been found to alter baseline and stress-induced corticosterone levels, reduce body condition and reproductive success, and increase telomere attrition in free-living birds. However, it remains unknown if alterations in nestling phenotype are due to direct or indirect effects of noise exposure. For example, indirect (maternal) effects of noise may occur if altered baseline and stress-induced corticosterone in mothers results in differential deposition of yolk steroids or other components in eggs. Noise exposure may also alter nestling corticosterone levels directly, given that nestlings cannot escape the nest during development. Here, we examined maternal versus direct effects of traffic noise exposure on baseline and stress-induced corticosterone levels, and body condition (as measured by size-corrected mass) in nestling tree swallows (Tachycineta bicolor). We used a two-way factorial design and partially cross-fostered eggs between nests exposed to differing levels (i.e. amplitudes) of traffic noise. For nestlings that were not cross-fostered, we also investigated the effects of traffic noise on telomere dynamics. Our results show a positive relationship between nestling baseline and stress-induced corticosterone and nestling noise exposure, but not maternal noise exposure. While we did not find a relationship between noise and body condition in nestlings, nestling baseline corticosterone was negatively associated with body condition. We also found greater telomere attrition for nestlings from nests with greater traffic noise amplitudes. These results suggest that direct, rather than maternal, effects result in potentially long-lasting consequences of noise exposure. Reduced nestling body condition and increased telomere attrition have been shown to reduce post-fledging survival in this species. Given that human transportation networks continue to expand, strategies to mitigate noise exposure on wildlife during critical periods (i.e. breeding) may be needed to maintain local population health in free-living passerines, such as tree swallows.


Assuntos
Exposição Ambiental , Comportamento de Nidação/fisiologia , Ruído , Andorinhas/fisiologia , Telômero/metabolismo , Poluição Relacionada com o Tráfego , Animais , Corticosterona/sangue , Feminino , Modelos Teóricos , Estresse Fisiológico , Andorinhas/sangue , Homeostase do Telômero
2.
Microb Ecol ; 74(3): 745-756, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28466089

RESUMO

Resident microbial communities living on amphibian skin can have significant effects on host health, yet the basic ecology of the host-microbiome relationship of many amphibian taxa is poorly understood. We characterized intraspecific variation in the skin microbiome of the salamander Ensatina eschscholtzii xanthoptica, a subspecies composed of four genetically distinct populations distributed throughout the San Francisco Bay Area and the Sierra Nevada mountains in California, USA. We found that salamanders from four geographically and genetically isolated populations harbor similar skin microbial communities, which are dominated by a common core set of bacterial taxa. Additionally, within a population, the skin microbiome does not appear to differ significantly between salamanders of different ages or sexes. In all cases, the salamander skin microbiomes were significantly different from those of the surrounding terrestrial environment. These results suggest that the relationship between E. e. xanthoptica salamanders and their resident skin microbiomes is conserved, possibly indicating a stable mutualism between the host and microbiome.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Pele/microbiologia , Urodelos/microbiologia , Fatores Etários , Animais , Bactérias/classificação , California , Feminino , Geografia , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Fatores Sexuais
3.
Environ Pollut ; 263(Pt A): 114566, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32320890

RESUMO

Modification of nighttime light levels by artificial illumination (artificial light at night; ALAN) is a rapidly increasing form of human disturbance that affects natural environments worldwide. Light in natural environments influences a variety of physiological and ecological processes directly and indirectly and, as a result, the effects of light pollution on species, communities and ecosystems are emerging as significant. Small prey species may be particularly susceptible to ALAN as it makes them more conspicuous and thus more vulnerable to predation by visually oriented predators. Understanding the effects of disturbance like ALAN is especially important for threatened or endangered species as impacts have the potential to impede recovery, but due to low population numbers inherent to at-risk species, disturbance is rarely studied. The endangered Stephens' kangaroo rat (SKR), Dipodomys stephensi, is a nocturnal rodent threatened by habitat destruction from urban expansion. The degree to which ALAN impacts their recovery is unknown. In this study, we examined the effects of ALAN on SKR foraging decisions across a gradient of light intensity for two types of ALAN, flood and bug lights (756 vs 300 lumen, respectfully) during full and new moon conditions. We found that ALAN decreased probability of resource patch depletion compared to controls. Moreover, lunar illumination, distance from the light source and light type interacted to alter SKR foraging. Under the new moon, SKR were consistently more likely to deplete patches under control conditions, but there was an increasing probability of patch depletion with distance from the source of artificial light. The full moon dampened SKR foraging activity and the effect of artificial lights. Our study underscores that ALAN reduces habitat suitability, and raises the possibility that ALAN may impede the recovery of at-risk nocturnal rodents.


Assuntos
Ecossistema , Mamíferos , Animais , Meio Ambiente , Poluição Ambiental , Humanos , Comportamento Predatório
4.
Front Microbiol ; 9: 442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593686

RESUMO

A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity) did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades) was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA