Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 477, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461108

RESUMO

Pulmonary arterial hypertension (PAH) is a multifactorial disease associated with the remodeling of pulmonary blood vessels. If left unaddressed, PAH can lead to right heart failure and even death. Multiple biological processes, such as smooth muscle proliferation, endothelial dysfunction, inflammation, and resistance to apoptosis, are associated with PAH. Increasing evidence suggests that epigenetic factors play an important role in PAH by regulating the chromatin structure and altering the expression of critical genes. For example, aberrant DNA methylation and histone modifications such as histone acetylation and methylation have been observed in patients with PAH and are linked to vascular remodeling and pulmonary vascular dysfunction. In this review article, we provide a comprehensive overview of the role of key epigenetic targets in PAH pathogenesis, including DNA methyltransferase (DNMT), ten-eleven translocation enzymes (TET), switch-independent 3A (SIN3A), enhancer of zeste homolog 2 (EZH2), histone deacetylase (HDAC), and bromodomain-containing protein 4 (BRD4). Finally, we discuss the potential of multi-omics integration to better understand the molecular signature and profile of PAH patients and how this approach can help identify personalized treatment approaches.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Medicina de Precisão , Hipertensão Pulmonar/patologia , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Epigênese Genética , Remodelação Vascular/genética , Proteínas de Ciclo Celular/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982525

RESUMO

The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfß1, Mcp1, Mmp9, and ßmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100-200 cGy for γ-IR, and 50-100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity.


Assuntos
Cardiomiopatias , Exposição à Radiação , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Remodelação Ventricular , Viagem , Função Ventricular Esquerda , Fibrose , Inflamação
3.
Circulation ; 144(1): 52-73, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078089

RESUMO

BACKGROUND: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Terapia Genética/métodos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/terapia , Complexo Correpressor Histona Desacetilase e Sin3/biossíntese , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Hipertensão Arterial Pulmonar/genética , Ratos , Ratos Sprague-Dawley , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
4.
Circ Res ; 127(6): 747-760, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32539601

RESUMO

RATIONALE: Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. OBJECTIVE: To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. METHODS AND RESULTS: Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE-/- mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE-/- mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. CONCLUSIONS: These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Proteínas rap1 de Ligação ao GTP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Permeabilidade , Fosforilação , Prognóstico , Proteômica , Medição de Risco , Fatores de Risco , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rap de Ligação ao GTP
5.
J Mol Cell Cardiol ; 153: 72-85, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33373644

RESUMO

The first confirmed case of novel Coronavirus Disease 2019 (COVID-19) in the United States was reported on January 20, 2020. As of November 24, 2020, close to 12.2 million cases of COVID-19 was confirmed in the US, with over 255,958 deaths. The rapid transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), its unusual and divergent presentation has strengthened the status of COVID-19 as a major public health threat. In this review, we aim to 1- discuss the epidemiological data from various COVID-19 patient cohorts around the world and the USA as well the associated risk factors; 2- summarize the pathophysiology of SARS-CoV-2 infection and the underlying molecular mechanisms for the respiratory and cardiovascular manifestations; 3- highlight the potential treatments and vaccines as well as current clinical trials for COVID-19.


Assuntos
COVID-19/complicações , Doenças Cardiovasculares/tratamento farmacológico , Pneumopatias/tratamento farmacológico , SARS-CoV-2/isolamento & purificação , COVID-19/transmissão , COVID-19/virologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/virologia , Gerenciamento Clínico , Saúde Global , Humanos , Pneumopatias/epidemiologia , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Estados Unidos/epidemiologia
6.
Mol Ther ; 28(2): 394-410, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879190

RESUMO

Inhibition of pulmonary fibrosis (PF) by restoring sarco/endoplasmic reticulum calcium ATPase 2a isoform (SERCA2a) expression using targeted gene therapy may be a potentially powerful new treatment approach for PF. Here, we found that SERCA2a expression was significantly decreased in lung samples from patients with PF and in the bleomycin (BLM) mouse model of PF. In the BLM-induced PF model, intratracheal aerosolized adeno-associated virus serotype 1 (AAV1) encoding for human SERCA2a (AAV1.hSERCA2a) reduces lung fibrosis and associated vascular remodeling. SERCA2a gene therapy also decreases right ventricular pressure and hypertrophy in both prevention and curative protocols. In vitro, we observed that SERCA2a overexpression inhibits fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition induced by transforming growth factor ß (TGF-ß1). Thus, pro-fibrotic gene expression is prevented by blocking nuclear factor κB (NF-κB)/interleukin-6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3) activation. This effect is signaled toward an inhibitory mechanism of small mother against decapentaplegic (SMAD)/TGF-ß signaling through the repression of OTU deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1) and Forkhead box M1 (FOXM1). Interestingly, this cross-inhibition leads to an increase of SKI and SnoN expression, an auto-inhibitory feedback loop of TGF-ß signaling. Collectively, our results demonstrate that SERCA2a gene transfer attenuates bleomycin (BLM)-induced PF by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI Axis. Thus, SERCA2a gene therapy may be a potential therapeutic target for PF.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Proteína Forkhead Box M1/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/terapia , Fator de Transcrição STAT3/metabolismo
7.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502015

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Pulmão/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Terapia Genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Remodelação Vascular/efeitos dos fármacos
8.
Blood ; 131(19): 2125-2137, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29572378

RESUMO

Resistance to targeted therapies has become increasingly prevalent. We noted that resistance to different targeted therapies occurs by largely common mechanisms. In this study, we used this information for identifying the mechanisms of resistance to enhancer of zeste homolog 2 (EZH2) inhibitors in diffuse large B-cell lymphoma (DLBCL) harboring EZH2 mutations. We discovered that EZH2 inhibitor-resistant DLBCL cells showed activation of the insulin-like growth factor 1 receptor (IGF-1R), MEK, and phosphoinositide-3-kinase (PI3K) pathways. Constitutive activation of IGF-1R, MEK, or PI3K pathways was sufficient to confer resistance to EZH2 inhibitors in DLBCL. The activation of the PI3K/AKT and MAPK pathways decreased TNFSF10 and BAD expression through a FOXO3-dependent mechanism, which was required for the antitumor effects of EZH2i GSK126. We also identified multiple acquired mutations in EZH2 inhibitor-resistant DLBCL cell lines. These mutations independently conferred resistance to EZH2 inhibitors. Mechanistically, cellular thermal shift assays revealed that the acquired EZH2 mutations that confer resistance to EZH2 inhibitors prevent EZH2 inhibitor binding to the EZH2 mutants. Notably, EZH2 inhibitor GSK126- and EPZ-6438-resistant DLBCL cells remained sensitive to the EZH2 inhibitor UNC1999 and embryonic ectoderm development protein inhibitor EED226, which provides an opportunity to treat DLBCLs that are resistant to these drugs. Collectively, our results underpin the importance for developing a unified approach for forestalling drug resistance by prospectively considering lessons learned from the use of different targeted therapeutic agents.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Conformação Proteica , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Rev Cardiovasc Med ; 21(2): 163-179, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32706206

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology. Most of the available drugs and FDA-approved therapies for treating pulmonary hypertension attempt to overcome the imbalance between vasoactive and vasodilator mediators, and restore the endothelial cell function. Traditional medications for treating PAH include the prostacyclin analogs and receptor agonists, phosphodiesterase 5 inhibitors, endothelin-receptor antagonists, and cGMP activators. While the current FDA-approved drugs showed improvements in quality of life and hemodynamic parameters, they have shown only very limited beneficial effects on survival and disease progression. None of them offers a cure against PAH, and the median survival rate remains less than three years from diagnosis. Extensive research efforts have led to the emergence of innovative therapeutic approaches in the area of PAH. In this review, we provide an overview of the current FDA-approved therapies in PAH and discuss the associated clinical trials and reported-side effects. As recent studies have led to the emergence of innovative therapeutic approaches in the area of PAH, we also focus on the latest promising therapies in preclinical studies such as stem cell-based therapies, gene transfer, and epigenetic therapies.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Arterial/efeitos dos fármacos , Hipertensão Arterial Pulmonar/terapia , Artéria Pulmonar/efeitos dos fármacos , Animais , Terapia Genética , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/mortalidade , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Transplante de Células-Tronco , Resultado do Tratamento
10.
J Mol Cell Cardiol ; 127: 20-30, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502350

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE: To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS: Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS: Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION: Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.


Assuntos
Aerossóis/administração & dosagem , Arritmias Cardíacas/terapia , Técnicas de Transferência de Genes , Hipertensão Arterial Pulmonar/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Traqueia/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Terapia Genética , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Canais de Potássio/genética , Canais de Potássio/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
11.
Circ Res ; 120(4): 645-657, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28096195

RESUMO

RATIONALE: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. OBJECTIVE: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. METHODS AND RESULTS: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation (Epac1-/-) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation-induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation-induced cell death. Mechanistically, Epac1 favors Ca2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca2+/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. CONCLUSIONS: Our results reveal the existence, within mitochondria, of different cAMP-Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/biossíntese , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular/fisiologia , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Ratos
12.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25369805

RESUMO

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Assuntos
Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Proteínas Ativadoras de GTPase/biossíntese , Genes ras/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais/fisiologia
13.
Biochem Soc Trans ; 42(2): 257-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646227

RESUMO

Epacs (exchange proteins directly activated by cAMP) act as guanine-nucleotide-exchange factors for the Ras-like small G-proteins Rap1 and Rap2, and are now recognized as incontrovertible factors leading to complex and diversified cAMP signalling pathways. Given the critical role of cAMP in the regulation of cardiac function, several studies have investigated the functional role of Epacs in the heart, providing evidence that Epacs modulate intracellular Ca2+ and are involved in several cardiac pathologies such as cardiac hypertrophy and arrhythmia. The present review summarizes recent data on the Epac signalling pathway and its role in cardiac pathophysiology. We also discuss recent advances in the discovery of novel pharmacological modulators of Epacs that were identified by high-throughput screening and their therapeutic potential for the treatment of cardiac disorders.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , AMP Cíclico/metabolismo , Cardiopatias/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
14.
J Biol Chem ; 287(53): 44192-202, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23139415

RESUMO

The cAMP-binding protein Epac is a therapeutic target for the treatment of various diseases such as cardiac hypertrophy and tumor invasion. This points out the importance to develop Epac inhibitors to better understand the involvement of these cAMP sensors in physiology and pathophysiology. Here, we have developed a functional fluorescence-based high-throughput assay with a Z' value around 0.7 for screening Epac-specific antagonists. We identified an Epac1 inhibitor compound named CE3F4 that blocked Epac1 guanine nucleotide exchange activity toward its effector Rap1 both in cell-free systems and in intact cells. CE3F4 is a tetrahydroquinoline analog that fails to influence protein kinase A holoenzyme activity. CE3F4 inhibited neither the interaction of Rap1 with Epac1 nor directly the GDP exchange on Rap1. The kinetics of inhibition by CE3F4 indicated that this compound did not compete for binding of agonists to Epac1 and suggested an uncompetitive inhibition mechanism with respect to Epac1 agonists. A structure-activity study showed that the formyl group on position 1 and the bromine atom on position 5 of the tetrahydroquinoline skeleton were important for CE3F4 to exert its inhibitory activity. Finally, CE3F4 inhibited Rap1 activation in living cultured cells, following Epac activation by either 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, an Epac-selective agonist, or isoprenaline, a non-selective ß-adrenergic receptor agonist. Our study shows that CE3F4 and related compounds may serve as a basis for the development of new therapeutic drugs.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Quinolinas/farmacologia , Proteínas de Transporte , AMP Cíclico/química , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Cinética , Ligação Proteica/efeitos dos fármacos , Quinolinas/química , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275371

RESUMO

Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNA, play a crucial role in the regulation of gene expression and are pivotal in biological processes like apoptosis, cell proliferation, and differentiation. SIN3a serves as a scaffold protein and facilitates interactions with transcriptional epigenetic partners and specific DNA-binding transcription factors to modulate gene expression by adding or removing epigenetic marks. However, the activation or repression of gene expression depends on the factors that interact with SIN3a, as it can recruit both transcriptional activators and repressors. The role of SIN3a has been extensively investigated in the context of cancer, including melanoma, lung, and breast cancer. Our group is interested in defining the roles of SIN3a and its partners in pulmonary vascular disease. Pulmonary arterial hypertension (PAH) is a multifactorial disease often described as a cancer-like disease and characterized by disrupted cellular metabolism, sustained vascular cell proliferation, and resistance to apoptosis. Molecularly, PAH shares many common signaling pathways with cancer cells, offering the opportunity to further consider therapeutic strategies used for cancer. As a result, many signaling pathways observed in cancer were studied in PAH and have encouraged new research studying SIN3a's role in PAH due to its impact on cancer growth. This comparison offers new therapeutic options. In this review, we delineate the SIN3a-associated epigenetic mechanisms in cancer and PAH cells and highlight their impact on cell survival and proliferation. Furthermore, we explore in detail the role of SIN3a in cancer to provide new insights into its emerging role in PAH pathogenesis.

16.
Theranostics ; 13(15): 5435-5451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908733

RESUMO

Doxorubicin (Dox) is an effective anticancer molecule, but its clinical efficacy is limited by strong cardiotoxic side effects. Lysosomal dysfunction has recently been proposed as a new mechanism of Dox-induced cardiomyopathy. However, to date, there is a paucity of therapeutic approaches capable of restoring lysosomal acidification and function in the heart. Methods: We designed novel poly(lactic-co-glycolic acid) (PLGA)-grafted silica nanoparticles (NPs) and investigated their therapeutic potential in the primary prevention of Dox cardiotoxicity in cardiomyocytes and mice. Results: We showed that NPs-PLGA internalized rapidly in cardiomyocytes and accumulated inside the lysosomes. Mechanistically, NPs-PLGA restored lysosomal acidification in the presence of doxorubicin or bafilomycin A1, thereby improving lysosomal function and autophagic flux. Importantly, NPs-PLGA mitigated Dox-related mitochondrial dysfunction and oxidative stress, two main mechanisms of cardiotoxicity. In vivo, inhalation of NPs-PLGA led to effective and rapid targeting of the myocardium, which prevented Dox-induced adverse remodeling and cardiac dysfunction in mice. Conclusion: Our findings demonstrate a pivotal role for lysosomal dysfunction in Dox-induced cardiomyopathy and highlight for the first time that pulmonary-driven NPs-PLGA administration is a promising strategy against anthracycline cardiotoxicity.


Assuntos
Cardiomiopatias , Nanopartículas , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Estresse Oxidativo , Lisossomos/metabolismo
17.
Front Physiol ; 14: 1292033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054039

RESUMO

The space radiation (IR) environment contains high charge and energy (HZE) nuclei emitted from galactic cosmic rays with the ability to overcome current shielding strategies, posing increased IR-induced cardiovascular disease risks for astronauts on prolonged space missions. Little is known about the effect of 5-ion simplified galactic cosmic ray simulation (simGCRsim) exposure on left ventricular (LV) function. Three-month-old, age-matched male Apolipoprotein E (ApoE) null mice were irradiated with 137Cs gamma (γ; 100, 200, and 400 cGy) and simGCRsim (50, 100, 150 cGy all at 500 MeV/nucleon (n)). LV function was assessed using transthoracic echocardiography at early/acute (14 and 28 days) and late/degenerative (365, 440, and 660 days) times post-irradiation. As early as 14 and 28-days post IR, LV systolic function was reduced in both IR groups across all doses. At 14 days post-IR, 150 cGy simGCRsim-IR mice had decreased diastolic wall strain (DWS), suggesting increased myocardial stiffness. This was also observed later in 100 cGy γ-IR mice at 28 days. At later stages, a significant decrease in LV systolic function was observed in the 400 cGy γ-IR mice. Otherwise, there was no difference in the LV systolic function or structure at the remaining time points across the IR groups. We evaluated the expression of genes involved in hemodynamic stress, cardiac remodeling, inflammation, and calcium handling in LVs harvested 28 days post-IR. At 28 days post-IR, there is increased expression of Bnp and Ncx in both IR groups at the lowest doses, suggesting impaired function contributes to hemodynamic stress and altered calcium handling. The expression of Gals3 and ß-Mhc were increased in simGCRsim and γ-IR mice respectively, suggesting there may be IR-specific cardiac remodeling. IR groups were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). No lower threshold was determined using the observed dose-response curves. These findings do not exclude the possibility of the existence of a lower IR threshold or the presence of IR-induced cardiovascular disease (CVD) when combined with additional space travel stressors, e.g., microgravity.

18.
Arterioscler Thromb Vasc Biol ; 31(9): 2114-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680901

RESUMO

OBJECTIVE: Vascular remodeling diseases (VRD) are mainly characterized by inflammation and a vascular smooth muscle cells (VSMCs) proproliferative and anti-apoptotic phenotype. Recently, the activation of the advanced glycation endproducts receptor (RAGE) has been shown to promote VSMC proliferation and resistance to apoptosis in VRD in a signal transducer and activator of transcription (STAT)3-dependant manner. Interestingly, we previously described in both cancer and VRD that the sustainability of this proproliferative and antiapoptotic phenotype requires activation of the transcription factor NFAT (nuclear factor of activated T-cells). In cancer, NFAT activation is dependent of the oncoprotein provirus integration site for Moloney murine leukemia virus (Pim1), which is regulated by STAT3 and activated in VRD. Therefore, we hypothesized that RAGE/STAT3 activation in VSMC activates Pim1, promoting NFAT and thus VSMC proliferation and resistance to apoptosis. Methods/Results- In vitro, freshly isolated human carotid VSMCs exposed to RAGE activator Nε-(carboxymethyl)lysine (CML) for 48 hours had (1) activated STAT3 (increased P-STAT3/STAT3 ratio and P-STAT3 nuclear translocation); (2) increased STAT3-dependent Pim1 expression resulting in NFATc1 activation; and (3) increased Pim1/NFAT-dependent VSMC proliferation (PCNA, Ki67) and resistance to mitochondrial-dependent apoptosis (TMRM, Annexin V, TUNEL). Similarly to RAGE inhibition (small interfering RNA [siRNA]), Pim1, STAT3 and NFATc1 inhibition (siRNA) reversed these abnormalities in human carotid VSMC. Moreover, carotid artery VSMCs isolated from Pim1 knockout mice were resistant to CML-induced VSMC proliferation and resistance to apoptosis. In vivo, RAGE inhibition decreases STAT3/Pim1/NFAT activation, reversing vascular remodeling in the rat carotid artery-injured model. CONCLUSIONS: RAGE activation accounts for many features of VRD including VSMC proliferation and resistance to apoptosis by the activation of STAT3/Pim1/NFAT axis. Molecules aimed to inhibit RAGE could be of a great therapeutic interest for the treatment of VRD.


Assuntos
Músculo Liso Vascular/patologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Receptores Imunológicos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Lisina/análogos & derivados , Lisina/sangue , Lisina/farmacologia , Camundongos , Fatores de Transcrição NFATC/fisiologia , Ratos , Receptor para Produtos Finais de Glicação Avançada , Fator de Transcrição STAT3/metabolismo
19.
Methods Mol Biol ; 2573: 263-278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040601

RESUMO

Pulmonary arterial hypertension (PAH) is a severe and progressive cardiopulmonary disease characterized by pathological remodeling of the resistance pulmonary arteries (PA), ultimately leading to right ventricular (RV) failure and death. Animal models have been particularly useful for unraveling the pathogenesis of PAH by providing incisive experimental strategies that were impossible in human studies. Over the past decade, gene therapy has been making considerable progress as an alternative strategy for treating PAH disease. Animal models mimicking PAH disease are essential at preclinical stages for assessing the therapeutic potential of gene therapy and determining genome viral vectors transduction, safety, dosage, and localization of transgene expression. The most commonly used PAH rat models in gene therapy studies are the monocrotaline (MCT), the chronic hypoxia-Sugen 5416, and the pneumonectomy (PNT)-MCT models. Here, we provide detailed protocols for creating these preclinical rodent models of PAH commonly used to assess the efficiency of lung gene therapy in PAH.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/terapia , Monocrotalina , Artéria Pulmonar , Ratos , Roedores
20.
Cells ; 11(6)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35326434

RESUMO

Over the past decades, a better understanding of the genetic and molecular alterations underlying several respiratory diseases has encouraged the development of new therapeutic strategies. Gene therapy offers new therapeutic alternatives for inherited and acquired diseases by delivering exogenous genetic materials into cells or tissues to restore physiological protein expression and/or activity. In this review, we review (1) different types of viral and non-viral vectors as well as gene-editing techniques; and (2) the application of gene therapy for the treatment of respiratory diseases and disorders, including pulmonary arterial hypertension, idiopathic pulmonary fibrosis, cystic fibrosis, asthma, alpha-1 antitrypsin deficiency, chronic obstructive pulmonary disease, non-small-cell lung cancer, and COVID-19. Further, we also provide specific examples of lung-targeted therapies and discuss the major limitations of gene therapy.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Fibrose Cística , Neoplasias Pulmonares , COVID-19/genética , COVID-19/terapia , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA