Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 18(10)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953266

RESUMO

Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-'omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2)-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment.


Assuntos
Autofagia , Fígado/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Voo Espacial , Animais , Betaína/metabolismo , Senescência Celular , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Glutationa/metabolismo , Metabolismo dos Lipídeos , Fígado/patologia , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Oxirredução , Estresse Oxidativo , Biossíntese de Proteínas , RNA de Transferência/biossíntese , Transcriptoma
2.
Cell Death Discov ; 10(1): 68, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336777

RESUMO

Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.

3.
Bone ; 172: 116779, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100359

RESUMO

Hyaluronan, a glycosaminoglycan synthesized by three isoenzymes (Has1, Has2, Has3), is known to play a role in regulating bone turnover, remodeling, and mineralization, which in turn can affect bone quality and strength. The goal of this study is to characterize how the loss of Has1 or Has3 affects the morphology, matrix properties, and overall strength of murine bone. Femora were isolated from Has1-/-, Has3-/-, and wildtype (WT) C57Bl/6 J female mice and were analyzed using microcomputed-tomography, confocal Raman spectroscopy, three-point bending, and nanoindentation. Of the three genotypes tested, Has1-/- bones demonstrated significantly lower cross-sectional area (p = 0.0002), reduced hardness (p = 0.033), and lower mineral-to-matrix ratio (p < 0.0001). Has3-/- bones had significantly higher stiffness (p < 0.0001) and higher mineral-to-matrix ratio (p < 0.0001) but lower strength (p = 0.0014) and bone mineral density (p < 0.0001) than WT. Interestingly, loss of Has3 was also associated with significantly lower accumulation of advanced glycation end-products than WT (p = 0.0478). Taken together, these results demonstrate, for the first time, the impact of the loss of hyaluronan synthase isoforms on cortical bone structure, content, and biomechanics. Loss of Has1 impacted morphology, mineralization, and micron-level hardness, while loss of Has3 reduced bone mineral density and affected organic matrix composition, impacting whole bone mechanics. This is the first study to characterize the effect of loss of hyaluronan synthases on bone quality, suggesting an essential role hyaluronan plays during the development and regulation of bone.


Assuntos
Glucuronosiltransferase , Ácido Hialurônico , Feminino , Camundongos , Animais , Hialuronan Sintases/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/química
4.
PLoS One ; 17(12): e0267921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36576921

RESUMO

Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain group to cells grown on tissue culture plastic. We measured the expression of hyaluronan turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration, PRG4 concentration, and the cytokine profile within the media. Our results show that the addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent response. Hyaluronidase expression was impacted by strain magnitude, which is exemplified by the decrease in hyaluronan concentration due to cyclic loading. We also show that PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflammatory cytokine profile when compared to the unloaded group. Multivariate analysis showed distinct separation between certain strain groups in being able to predict strain group, hyaluronan concentration, and PRG4 concentration from gene expression or cytokine concentration data, highlighting the complexity of the system. Overall, this study shows that cyclic loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and cytokines from synovial fibroblasts.


Assuntos
Sinoviócitos , Sinoviócitos/metabolismo , Proteoglicanas/metabolismo , Ácido Hialurônico/metabolismo , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Líquido Sinovial/metabolismo
5.
Stem Cell Res ; 56: 102513, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517335

RESUMO

CDKN1A/P21 is a potent inhibitor of cell cycle progression and its overexpression is thought to be associated with inhibition of normal bone regenerative osteogenesis during spaceflight. To test whether CDKN1A/P21 regulates osteogenesis in response to mechanical loading we studied cyclic stretch versus static culture of Cdkn1a-/- (null) or wildtype primary mouse bone marrow osteoprogenitors during 21-day ex-vivo mineralization assays. Cyclically stretched Cdkn1a-/- cells are 3.95-fold more proliferative than wildtype, while static Cdkn1a-/- cells show a 2.50-fold increase. Furthermore, stage-specific single cell RNAseq analyses show expression of Cdkn1a is strongly suppressed by cyclic stretch in early and late osteoblasts, and minimally in the progenitor population. Lastly, both stretch and/or Cdkn1a deletion cause population shift from osteoprogenitors to osteoblasts, also indicating increased differentiation. Collectively, our results support the hypothesis that Cdkn1a constitutively plays a mechano-reversible anti-proliferative role during osteogenesis and suggests a new molecular target to counter regenerative deficits caused by disuse.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Osteoblastos , Osteogênese/genética
6.
iScience ; 24(4): 102361, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870146

RESUMO

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

7.
J Tissue Eng Regen Med ; 14(1): 173-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670902

RESUMO

Bone fractures often result in complications that require surgical intervention to promote fracture healing. Tissue engineering seeks to alleviate the need for autologous bone grafting by utilizing scaffolds that can promote bone fracture healing. Plant-derived materials are desirable biomaterials because of their biodegradability, availability, and low immunogenicity. Among various plant-derived proteins, zein, which is a corn protein, has shown promise for bone repair. However, when processed, zein is often blended with synthetic materials to improve mechanical properties and overall hydrolytic stability. In this study, pure zein was electrospun to create fibrous scaffolds and cross-linked with trimethylolpropane triglycidyl ether to improve hydrolytic stability. Scaffolds were characterized and evaluated in vitro for promoting the osteogenic differentiation of MC3T3-E1 cells, which are bone progenitor cells. Cross-linked zein scaffolds retained their uniform fiber morphologies after hydration. MC3T3-E1 cells grew and differentiated on the zein scaffolds even in the absence of induction factors, as demonstrated by increased alkaline phosphatase activity, mineralization, and early upregulation of Runx2 gene expression, a transcription factor associated with osteoblast differentiation. These studies demonstrate that stable, zein fibrous scaffolds could have potential for use in bone repair applications.


Assuntos
Osso e Ossos/metabolismo , Eletroquímica/métodos , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Zeína/química , Células 3T3 , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Hidrólise , Camundongos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/efeitos dos fármacos , Estresse Mecânico , Resistência à Tração , Distribuição Tecidual , Alicerces Teciduais/química
8.
iScience ; 23(12): 101771, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33376971

RESUMO

Space radiation inhibits angiogenesis by two mechanisms depending on the linear energy transfer (LET). Using human 3D micro-vessel models, blockage of the early motile stage of angiogenesis was determined to occur after exposure to low LET ions (<3 KeV/AMU), whereas inhibition of the later stages occurs after exposure to high LET ions (>8 KeV/AMU). Strikingly, the combined effect is synergistic, detectible as low as 0.06 Gy making mixed ion space radiation more potent. Candidates for bystander transmission are microRNAs (miRNAs), and analysis on miRNA-seq data from irradiated mice shows that angiogenesis would in theory be downregulated. Further analysis of three previously identified miRNAs showed downregulation of their targets associated with angiogenesis and confirmed their involvement in angiogenesis pathways and increased health risks associated with cardiovascular disease. Finally, synthetic molecules (antagomirs) designed to inhibit the predicted miRNAs were successfully used to reverse the inhibition of angiogenesis.

9.
iScience ; 23(12): 101747, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33376970

RESUMO

Spaceflight missions can cause immune system dysfunction in astronauts with little understanding of immune outcomes in deep space. This study assessed immune responses in mice following ground-based, simulated deep spaceflight conditions, compared with data from astronauts on International Space Station missions. For ground studies, we simulated microgravity using the hindlimb unloaded mouse model alone or in combination with acute simulated galactic cosmic rays or solar particle events irradiation. Immune profiling results revealed unique immune diversity following each experimental condition, suggesting each stressor results in distinct circulating immune responses, with clear consequences for deep spaceflight. Circulating plasma microRNA sequence analysis revealed involvement in immune system dysregulation. Furthermore, a large astronaut cohort showed elevated inflammation during low-Earth orbit missions, thereby supporting our simulated ground experiments in mice. Herein, circulating immune biomarkers are defined by distinct deep space irradiation types coupled to simulated microgravity and could be targets for future space health initiatives.

10.
PLoS One ; 12(9): e0183480, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877184

RESUMO

The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.


Assuntos
Regulação da Expressão Gênica , Reação em Cadeia da Polimerase Multiplex/métodos , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Astronave , Ausência de Peso , Animais , Escherichia coli/genética , Liofilização , Fígado/metabolismo , Camundongos , RNA/genética , Reprodutibilidade dos Testes
11.
Stem Cells Dev ; 24(22): 2605-21, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26414276

RESUMO

Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microgravity for 15 days inhibits mESC differentiation and expression of terminal germ layer lineage markers in EBs. Additionally, microgravity-unloaded EBs retained stem cell self-renewal markers, suggesting that mechanical loading at Earth's gravity is required for normal differentiation of mESCs. Finally, cells recovered from microgravity-unloaded EBs and then cultured at Earth's gravity showed greater stemness, differentiating more readily into contractile cardiomyocyte colonies. These results indicate that mechanical unloading of stem cells in microgravity inhibits their differentiation and preserves stemness, possibly providing a cellular mechanistic basis for the inhibition of tissue regeneration in space and in disuse conditions on earth.


Assuntos
Diferenciação Celular , Corpos Embrioides/citologia , Ausência de Peso , Animais , Linhagem Celular , Camundongos
14.
PLoS One ; 8(4): e61372, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637819

RESUMO

Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space. To test this possibility, we exposed 16-week-old female C57BL/6J mice (n = 8) to microgravity for 15-days on the STS-131 space shuttle mission. Analysis of the pelvis by µCT shows decreases in bone volume fraction (BV/TV) of 6.29%, and bone thickness of 11.91%. TRAP-positive osteoclast-covered trabecular bone surfaces also increased in microgravity by 170% (p = 0.004), indicating osteoclastic bone degeneration. High-resolution X-ray nanoCT studies revealed signs of lacunar osteolysis, including increases in cross-sectional area (+17%, p = 0.022), perimeter (+14%, p = 0.008), and canalicular diameter (+6%, p = 0.037). Expression of matrix metalloproteinases (MMP) 1, 3, and 10 in bone, as measured by RT-qPCR, was also up-regulated in microgravity (+12.94, +2.98 and +16.85 fold respectively, p<0.01), with MMP10 localized to osteocytes, and consistent with induction of osteocytic osteolysis. Furthermore, expression of CDKN1a/p21 in bone increased 3.31 fold (p<0.01), and was localized to osteoblasts, possibly inhibiting the cell cycle during tissue regeneration as well as conferring apoptosis resistance to these cells. Finally the apoptosis inducer Trp53 was down-regulated by -1.54 fold (p<0.01), possibly associated with the quiescent survival-promoting function of CDKN1a/p21. In conclusion, our findings identify the pelvic and femoral region of the mouse skeleton as an active site of rapid bone loss in microgravity, and indicate that this loss is not limited to osteoclastic degradation. Therefore, this study offers new evidence for microgravity-induced osteocytic osteolysis, and CDKN1a/p21-mediated osteogenic cell cycle arrest.


Assuntos
Pontos de Checagem do Ciclo Celular , Osteoclastos/fisiologia , Osteócitos/fisiologia , Osteólise/metabolismo , Ossos Pélvicos/fisiopatologia , Ausência de Peso/efeitos adversos , Animais , Reabsorção Óssea/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteólise/etiologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA