Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biomech ; 163: 111924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237496

RESUMO

The biomechanical literature describes axial rotation occurring coupled with lateral bending and flexion in the cervical spine. Since the head is kept level during some activities of daily living, we set out to investigate the changes in total and segmental motion that occur when a level gaze constraint is applied to cadaveric cervical spine specimens during axial rotation. 1.5Nm of left and right axial rotation moment was applied to sixteen C2-T1 cadaveric specimens with C2 unconstrained and C2 constrained to simulate level gaze. Overall and segmental motions were determined using optoelectronic motion measurement and specimen-specific kinematic modeling. Without a kinematic constraint on C2, motions were as described in the literature; namely, flexion and lateral bending to the same side as axial rotation. Keeping C2 level reduced that total axial rotation range of motion of the specimens. Changes were also produced in segmental coupled rotation in all specimens. The observed changes included completely opposite coupled motion than in the uncoupled specimens, and traditional coupled behavior at one load extreme and the opposite at the other extreme. Constraining C2 during axial rotation to simulate level gaze can produce coupled motion that differs from the classically described flexion and lateral bending to the same side as axial rotation. Statement of Clinical Significance: Activities of daily living that require the head to be kept level during axial rotation of the cervical spine may produce segmental motions that are quite different from the classically described motions with implications for biomechanical experiments and implant designers.


Assuntos
Atividades Cotidianas , Vértebras Cervicais , Humanos , Rotação , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Cadáver
2.
N Am Spine Soc J ; 12: 100170, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185340

RESUMO

Background: The theoretical advantages of hybrid constructs over multi-level fusion have been illustrated in clinical and biomechanical studies. However, there is no biomechanical data on hybrid constructs using load control analyses. There is also no clear data on whether there is a biomechanical difference if the arthroplasty is below or above a 1- or 2-level fusion. This work investigated the effect on segmental motion of having a cervical total disc arthroplasty implanted above or below a 1- or 2-level fusion. Methods: Segmental motions of 16 C2-T1 cervical spine specimens were measured as the specimens were tested to 1.5Nm in axial rotation and in flexion-extension under compressive preload. Tests were conducted on intact specimens, and then after arthroplasty with a 1-level and 2-level fusion. 8 specimens were in test Group 1, where the hybrid configuration had a total disc arthroplasty above a 1- or 2-level fusion. The arthroplasty was below the 1- and 2-level fusion in Group 2. Load control and displacement control analyses were conducted to determine the effect of the hybrid configurations on segmental motion. Results: In load control, compensatory motion increases were found at all non-instrumented cervical spine segments in flexion-extension and axial rotation. Flexion-extension and axial rotation ranges of motion at the total disc arthroplasty level were less than 1° different than intact.In displacement control, there was no consistent pattern of compensatory motion. Range of motion at the arthroplasty level was within 3.5° of intact. Conclusions: The total disc arthroplasty segmental level in a hybrid construct has similar amounts of motion as intact. This may shield the arthroplasty level and adjacent levels from supra-physiological motion and loading. These results suggest that a hybrid construct may be protective of adjacent segments, whether the total disc arthroplasty is above or below the fusion.

3.
Clin Biomech (Bristol, Avon) ; 100: 105795, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252452

RESUMO

BACKGROUND: The goal was to determine the effect of addition of oblique trajectory distal interlock screws to a retrograde intramedullary femoral nail on implant stability (stiffness), cycles to failure and mode of failure. The hypothesis was that addition of oblique screws would increase implant stability and number of loading cycles to failure. METHODS: Eight matched pairs were tested; one femur implanted with a femoral nail with only transverse distal interlock screws and the other with transverse and oblique interlock screws. Axial compressive load was applied to the femoral head and the gluteal tendon was tensioned vertically to simulate standing or at 45° to the sagittal plane to simulate stair climbing. Loads were cycled to increasing amplitude until failure of fixation (10 mm displacement or 10° rotation). FINDINGS: In simulated standing, oblique screw specimen had greater sagittal bending (bowing) than transverse only specimen. Transverse (axial) plane motion was higher in simulated stair climbing in oblique screw specimen. Oblique screw specimen had higher sagittal plane translation at 600 N of load. At 300 N, oblique screw specimen had lower internal-external rotation than transverse only specimen. A larger number of cycles to failure were observed in four oblique screw of seven paired specimen. Failure (10 mm or 10 degrees of motion) was only achieved during simulated stair climbing. INTERPRETATION: Our hypothesis that adding oblique screws improves fixation was rejected. Activities of daily living other than standing may constitute a challenge to fracture fixation; fixation failure occurred at lower loads in simulated stair climbing than standing.


Assuntos
Atividades Cotidianas , Humanos
4.
Spine (Phila Pa 1976) ; 47(23): 1627-1636, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943241

RESUMO

STUDY DESIGN: This was a preclinical study. OBJECTIVE: Evaluate sex-dependent differences in the bone healing response to recombinant human bone morphogenetic protein-2 (rhBMP-2) in a rat posterolateral spinal fusion model. SUMMARY OF BACKGROUND DATA: Minimal and conflicting data exist concerning potential sex-dependent differences in rhBMP-2-mediated bone regeneration in the context of spinal fusion. MATERIALS AND METHODS: Forty-eight female and male Sprague-Dawley rats (N=24/group), underwent L4-L5 posterolateral fusion with bilateral placement of an absorbable collagen sponge, each loaded with 5 µg of bone morphogenetic protein-2 (10 µg/animal). At eight weeks postoperative, 10 specimens of each sex were tested in flexion-extension with quantification of range of motion and stiffness. The remaining specimens were evaluated for new bone growth and successful fusion via radiography, blinded manual palpation and microcomputed tomography (microCT). Laboratory microCT quantified bone microarchitecture, and synchrotron microCT examined bone microstructure at the 1 µm level. RESULTS: Manual palpation scores differed significantly between sexes, with mean fusion scores of 2.4±0.4 in females versus 3.1±0.6 in males ( P <0.001). Biomechanical stiffness did not differ between sexes, but range of motion was significantly greater and more variable for females versus males (3.7±5.6° vs. 0.27±0.15°, P <0.005, respectively). Laboratory microCT showed significantly smaller volumes of fusion masses in females versus males (262±87 vs. 732±238 mm 3 , respectively, P <0.001) but significantly higher bone volume fraction (0.27±0.08 vs. 0.12±0.05, respectively, P <0.001). Mean trabecular thickness was not different, but trabecular number was significantly greater in females (3.1±0.5 vs. 1.5±0.4 mm -1 , respectively, P <0.001). Synchrotron microCT showed fine bone structures developing in both sexes at the eight-week time point. CONCLUSIONS: This study demonstrates sex-dependent differences in bone regeneration induced by rhBMP-2. Further investigation is needed to uncover the extent of and mechanisms underlying these sex differences, particularly at different doses of rhBMP-2.


Assuntos
Vértebras Lombares , Fusão Vertebral , Humanos , Feminino , Masculino , Ratos , Animais , Vértebras Lombares/cirurgia , Caracteres Sexuais , Microtomografia por Raio-X , Ratos Sprague-Dawley , Proteína Morfogenética Óssea 2/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fusão Vertebral/métodos , Proteínas Recombinantes/farmacologia
5.
Spine J ; 21(4): 708-719, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33160033

RESUMO

BACKGROUND CONTEXT: Transition from standing to sitting significantly decreases lumbar lordosis with the greatest lordosis-loss occurring at L4-S1. Fusing L4-S1 eliminates motion and thus the proximal mobile segments maybe recruited during transition from standing to sitting to compensate for the loss of L4-S1 mobility. This may subject proximal segments to supra-physiologic flexion loading. PURPOSE: Assess effects of instrumented fusion versus motion preservation at L4-L5 and L5-S1 on lumbar spine loads and proximal segment motions during transition from standing to sitting. STUDY DESIGN: Biomechanical study using human thoracolumbar spine specimens. METHODS: A novel laboratory model was used to simulate lumbosacral alignment changes caused by a person's transition from standing to sitting in eight T10-sacrum spine specimens. The sacrum was tilted in the sagittal plane while constraining anterior-posterior translation of T10. Continuous loading-data and segmental motion-data were collected over a range of sacral slope values, which represented transition from standing to different sitting postures. We compared different constructs involving fusions and motion preserving prostheses across L4-S1. RESULTS: After L4-S1 fusion, the sacrum could not be tilted as far posteriorly compared to the intact spine for the same applied moment (p<.001). For the same reduction in sacral slope, L4-S1 fusion induced 2.9 times the flexion moment in the lumbar spine and required 2.4 times the flexion motion of the proximal segments as the intact condition (p<.001). Conversely, motion preservation at L4-S1 restored lumbar spine loads and proximal segment motions to intact specimen levels during transition from standing to sitting. CONCLUSIONS: In general, sitting requires lower lumbar segments to undergo flexion, thereby increasing load on the lumbar disks. L4-S1 fusion induced greater moments and increased flexion of proximal segments to attain a comparable seated posture. Motion preservation using a total joint replacement prosthesis at L4-S1 restored the lumbar spine loads and proximal segment motion to intact specimen levels during transition from standing to sitting. CLINICAL SIGNIFICANCE: After L4-S1 fusion, increased proximal segment loading during sitting may cause discomfort in some patients and may lead to junctional breakdown over time. Preserving motion at L4-S1 may improve patient comfort and function during activities of daily living, and potentially decrease the need for adjacent level surgery.


Assuntos
Vértebras Lombares , Fusão Vertebral , Atividades Cotidianas , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Postura Sentada
6.
Acta Biomater ; 127: 146-158, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831576

RESUMO

We recently developed a recombinant growth factor-free bone regenerative scaffold composed of stoichiometric hydroxyapatite (HA) ceramic particles and human demineralized bone matrix (DBM) particles (HA-DBM). Here, we performed the first pre-clinical comparative evaluation of HA-DBM relative to the industry standard and established positive control, recombinant human bone morphogenetic protein-2 (rhBMP-2), using a rat posterolateral spinal fusion model (PLF). Female Sprague-Dawley rats underwent bilateral L4-L5 PLF with implantation of the HA-DBM scaffold or rhBMP-2. Fusion was evaluated using radiography and blinded manual palpation, while biomechanical testing quantified the segmental flexion-extension range-of-motion (ROM) and stiffness of the fused segments at 8-weeks postoperatively. For mechanistic studies, pro-osteogenic gene and protein expression at 2-days and 1-, 2-, and 8-weeks postoperatively was assessed with another cohort. Unilateral fusion rates did not differ between the HA-DBM (93%) and rhBMP-2 (100%) groups; however, fusion scores were higher with rhBMP-2 (p = 0.008). Both treatments resulted in significantly reduced segmental ROM (p < 0.001) and greater stiffness (p = 0.009) when compared with non-operated controls; however, the degree of stabilization was significantly higher with rhBMP-2 treatment relative to the HA-DBM scaffold. In the mechanistic studies, PLGA and HA scaffolds were used as negative controls. Both rhBMP-2 and HA-DBM treatments resulted in significant elevations of several osteogenesis-associated genes, including Runx2, Osx, and Alp. The rhBMP-2 treatment led to significantly greater early, mid, and late osteogenic markers, which may be the mechanism in which early clinical complications are seen. The HA-DBM scaffold also induced osteogenic gene expression, but primarily at the 2-week postoperative timepoint. Overall, our findings show promise for this 3D-printed composite as a recombinant growth factor-free bone graft substitute for spinal fusion. STATEMENT OF SIGNIFICANCE: Despite current developments in bone graft technology, there remains a significant void in adequate materials for bone regeneration in clinical applications. Two of the most efficacious bone graft options are the gold-standard iliac crest bone graft and recombinant human-derived bone morphogenetic protein-2 (rhBMP-2), available commercially as Infuse™. Although efficacious, autologous graft is associated with donor-site morbidity, and Infuse™ has known side effects related to its substantial host inflammatory response, possibly associated with a immediate, robust osteoinductive response. Hence, there is a need for a bone graft substitute that provides adequate osteogenesis without associated adverse events. This study represents a significant step in the design of off-the-shelf growth factor-free devices for spine fusion.


Assuntos
Fusão Vertebral , Animais , Matriz Óssea , Proteína Morfogenética Óssea 2 , Transplante Ósseo , Cerâmica/farmacologia , Feminino , Vértebras Lombares , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes , Fator de Crescimento Transformador beta
7.
J Neurosurg Spine ; : 1-7, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32330888

RESUMO

OBJECTIVE: The authors conducted a study to determine whether a change in T1 tilt results in a compensatory change in the cervical sagittal vertical axis (SVA) in a cadaveric spine model. METHODS: Six fresh-frozen cadavers (occiput [C0]-T1) were cleaned of soft tissue and mounted on a customized test apparatus. A 5-kg mass was applied to simulate head weight. Infrared fiducials were used to track segmental motion. The occiput was constrained to maintain horizontal gaze, and the mounting platform was angled to change T1 tilt. The SVA was altered by translating the upper (occipital) platform in the anterior-posterior plane. Neutral SVA was defined by the lowest flexion-extension moment at T1 and recorded for each T1 tilt. Lordosis was measured at C0-C2, C2-7, and C0-C7. RESULTS: Neutral SVA was positively correlated with T1 tilt in all specimens. After increasing T1 tilt by a mean of 8.3° ± 2.2°, neutral SVA increased by 27.3 ± 18.6 mm. When T1 tilt was reduced by 6.7° ± 1.4°, neutral SVA decreased by a mean of 26.1 ± 17.6 mm.When T1 tilt was increased, overall (C0-C7) lordosis at the neutral SVA increased from 23.1° ± 2.6° to 32.2° ± 4.4° (p < 0.01). When the T1 tilt decreased, C0-C7 lordosis at the neutral SVA decreased to 15.6° ± 3.1° (p < 0.01). C0-C2 lordosis increased from 12.9° ± 9.3° to 29.1° ± 5.0° with increased T1 tilt and decreased to -4.3° ± 6.8° with decreased T1 tilt (p = 0.047 and p = 0.041, respectively). CONCLUSIONS: Neutral SVA is not a fixed property but, rather, is positively correlated with T1 tilt in all specimens. Overall lordosis and C0-C2 lordosis increased when T1 tilt was increased from baseline, and vice versa.

8.
Clin Biomech (Bristol, Avon) ; 78: 105078, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585556

RESUMO

BACKGROUND: Conditions requiring cervical decompression and stabilization are commonly treated using anterior cervical discectomy and fusion using an anterior cage-plate construct. Anterior zero profile integrated cages are an alternative to a cage-plate construct, but literature suggests they may result in less motion reduction. Interfacet cages may improve integrated cage stability. This study evaluated the motion reduction of integrated cages with and without supplemental interfacet fixation. Motion reduction of integrated cages were also compared to published cage-plate results. METHODS: Seven cadaveric (C2-T1) spines were tested in flexion-extension, lateral bending, and rotation. Specimens were tested: 1) intact, 2) C6-C7 integrated cage, 3) C6-C7 integrated cage + interfacet cages, 4) additional integrated cages at C3-C4 and C4-C5, 5) C3-C4, C4-C5 and C6-C7 integrated cages + interfacet cages. Motion, lordosis, disc and neuroforaminal height were assessed. FINDINGS: Integrated cage at C6-C7 decreased flexion-extension by 37% (P = .06) and C3-C5 by 54% (P < .01). Integrated + interfacet cages decreased motion by 89% and 86% compared to intact (P < .05). Integrated cages increased lordosis at C4-C5 and C6-C7 (P < .01). Integrated + interfacet cages returned C3-C5 lordosis to intact values, while C6-C7 remained more lordotic (P = .02). Compared to intact, neuroforaminal height increased after integrated cages at C3-C5 (P ≤ .01) and at all levels after interfacet cages (P < .01). INTERPRETATION: Anterior integrated cages provides less stability than traditional cage-plate constructs while supplemental interfacet cages improve stabilization. Integrated cages provide more lordosis at caudal levels and increase neuroforaminal height more at cranial levels. After interfacet cages, posterior disc height and neuroforaminal height increased more at the caudal segments.


Assuntos
Vértebras Cervicais/fisiologia , Vértebras Cervicais/cirurgia , Discotomia/instrumentação , Fusão Vertebral/instrumentação , Fenômenos Biomecânicos , Placas Ósseas , Cadáver , Feminino , Humanos , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Rotação
9.
Clin Biomech (Bristol, Avon) ; 62: 34-41, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30665037

RESUMO

BACKGROUND: Cervical fusion is associated with adjacent segment degeneration. Cervical disc arthroplasty is considered an alternative to reduce risk of adjacent segment disease. Kinematics after arthroplasty should closely replicate healthy in vivo kinematics to reduce adjacent segment stresses. The purpose of this study was to assess the kinematics of a polycrystalline diamond cervical disc prosthesis. METHODS: Nine cadaveric C3-T1 spines were tested intact and after one (C5-C6) and two level (C5-C7) arthroplasty (Triadyme-C, Dymicron Inc., Orem, UT, USA). Kinematics were evaluated in flexion-extension, lateral bending, and axial rotation. FINDINGS: Prosthesis placement at C5-C6 and C6-C7 was 0.5 mm anterior and 0.6 mm posterior to midline respectively. C5-C6 flexion-extension motion was 12.8° intact and 10.5° after arthroplasty. C6-C7 flexion-extension motion was 10.0 and 11.4° after arthroplasty. C5-C6 lateral bending reduced from 8.5 to 3.7° after arthroplasty and at C6-C7 from 7.5 to 5.1°. C5-C6 axial rotation decreased from 10.4 to 6.2° after arthroplasty and at C6-C7 from 7.8 to 5.3°. Segmental lordosis increased by 4.2°, and middle disc height by 1.4 mm after arthroplasty. Change in center of rotation from intact to arthroplasty averaged 0.9 mm posteriorly and 0.1 mm caudally at C5-C6, and 1.4 mm posteriorly and 0.3 mm cranially at C6-C7. INTERPRETATION: The cervical disc arthroplasty evaluated restored flexion-extension motion to intact levels and moderately increased segmental stiffness. Disc height increased by up to 1.5 mm and segmental lordosis by 4.2°. The unique prosthesis design allowed the axis of rotation after arthroplasty to closely mimic the native location.


Assuntos
Artroplastia/métodos , Vértebras Cervicais/cirurgia , Próteses e Implantes , Implantação de Prótese , Doenças da Coluna Vertebral/cirurgia , Substituição Total de Disco/métodos , Adulto , Fenômenos Biomecânicos , Cadáver , Vértebras Cervicais/fisiologia , Diamante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pescoço/cirurgia , Amplitude de Movimento Articular/fisiologia , Rotação
10.
JOR Spine ; 1(4): e1040, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463455

RESUMO

INTRODUCTION: Anterior cervical discectomy and fusion has been associated with the development of adjacent segment degeneration (ASD), with clinical incidence of approximately 3% per year. Cervical total disc arthroplasty (TDA) has been proposed as an alternative to prevent ASD. HYPOTHESES: TDA in optimal placement using an elastic-core cervical disc (RHINE, K2M Inc., Leesburg, Virginia) will replicate natural kinematics and will improve with optimal vs anterior placement. METHODS: Seven C3-T1 cervical cadaver spines were tested intact first, then after one-level TDA at C5-C6 anterior placement, after TDA at C5-C6 optimal placement, after two-level TDA at C5-C6 and C6-C7 optimal placement, and finally after two-level TDA at C5-C6 lateral placement and C6-C7 optimal placement. The specimens were subjected to: Flexion-Extension moments (+1.5 Nm) with compressive preloads of 0 N and 150 N, lateral bending (LB) and axial rotation (AR) (+1.5 Nm) without preload. RESULTS: C5-C6 TDA in optimal placement resulted in a non-significant increase in flexion-extension ROM compared to intact under 0 N and 150 N preload (P > 0.05). Both LB and AR ROM decreased with arthroplasty (P < 0.01). Optimal placement of C6-C7 TDA resulted in an increase in flexion-extension ROM with preload compared to intact (P < 0.05) while LB and AR ROM decreased with arthroplasty (P < 0.01). CONCLUSION: This six degree of freedom elastic-core disc arthroplasty effectively restored flexion-extension motion to intact levels. In LB the TDA maintained 42% ROM at C5-C6 and 60% at C6-C7. In AR 57% of the ROM was maintained at C5-C6 and 70% at C6-C7. These findings are supported by literature which shows cervical TDA results in restoration of approximately 50% ROM in LB and AR, which is a multifactorial phenomenon encompassing TDA design parameters and anatomical constraints. Anterior placement of this viscoelastic TDA device shows motion restoration similar to optimal placement suggesting its design may be less sensitive to suboptimal placement.

11.
Pract Radiat Oncol ; 1(4): 289, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-24674010
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA