Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 763-770, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819843

RESUMO

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.

2.
Beilstein J Org Chem ; 20: 2005-2015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161710

RESUMO

Dynamic, responsive materials can be built using photosurfactants (PS) that self-assemble into ordered nanostructures, such as micelles or liquid crystals. These PS contain photoswitchable groups, such as azobenzene (Azo) or, more recently, arylazopyrazoles (AAPs), which change shape and polarity on photoisomerisation between the E and Z states, thus changing the self-assembled structure. Small-angle X-ray scattering (SAXS) is a powerful technique to probe the morphology of PS and can be used to measure the mechanisms of structural changes using in-situ light irradiation with rapid, time-resolved data collection. However, X-ray irradiation has been shown previously to induce Z-to-E isomerisation of Azo-PS, which can lead to inaccuracies in the measured photostationary state. Here, we investigate the effect of light and X-ray irradiation on micelles formed from two different PS, containing either an Azo or AAP photoswitch using SAXS with in-situ light irradiation. The effect of X-ray irradiation on the Z isomer is shown to depend on the photoswitch, solvent, concentration and morphology. We use this to create guidelines for future X-ray experiments using photoswitchable molecules, which can aid more accurate understanding of these materials for application in solar energy storage, catalysis or controlled drug delivery.

3.
Soft Matter ; 16(40): 9183-9187, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33001130

RESUMO

The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation.

4.
Langmuir ; 34(34): 10123-10134, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30071720

RESUMO

Azobenzene photosurfactants are light-responsive amphiphiles that have garnered significant attention for diverse applications including delivery and sorting systems, phase transfer catalysis, and foam drainage. The azobenzene chromophore changes both its polarity and conformation (trans-cis isomerization) in response to UV light, while the amphiphilic structure drives self-assembly. Detailed understanding of the inherent relationship between the molecular structure, physicochemical behavior, and micellar arrangement of azobenzene photosurfactants is critical to their usefulness. Here, we investigate the key structure-function-assembly relationships in the popular cationic alkylazobenzene trimethylammonium bromide (AzoTAB) family of photosurfactants. We show that subtle changes in the surfactant structure (alkyl tail, spacer length) can lead to large variations in the critical micelle concentration, particularly in response to light, as determined by surface tensiometry and dynamic light scattering. Small-angle neutron scattering studies also reveal the formation of more diverse micellar aggregate structures (ellipsoids, cylinders, spheres) than predicted based on simple packing parameters. The results suggest that whereas the azobenzene core resides in the effective hydrophobic segment in the trans-isomer, it forms part of the effective hydrophilic segment in the cis-isomer because of the dramatic conformational and polarity changes induced by photoisomerization. The extent of this shift in the hydrophobic-hydrophilic balance is determined by the separation between the azobenzene core and the polar head group in the molecular structure. Our findings show that judicious design of the AzoTAB structure enables selective tailoring of the surfactant properties in response to light, such that they can be exploited and controlled in a reliable fashion.

5.
Nanoscale ; 12(11): 6300-6306, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32162625

RESUMO

Viscoelastic fluids whose rheological properties are tunable with light have the potential to deliver significant impact in fields relying on a change in flow behavior, such as in-use tuning of combined efficient heat-transfer and drag-reduction agents, microfluidic flow and controlled encapsulation and release. However, simple, single-component systems must be developed to allow integration with these applications. Here, we report a single-component viscoelastic fluid, capable of a dramatic light-sensitive rheological response, from a neutral azobenzene photosurfactant, 4-hexyl-4'butyloxymonotetraethylene glycol (C6AzoOC4E4) in water. From cryo-transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and rheology measurements, we observe that the photosurfactant forms an entangled network of wormlike micelles in water, with a high viscosity (28 Pa s) and viscoelastic behaviour. UV irradiation of the surfactant solution creates a less dense micellar network, with some vesicle formation. As a result, the solution viscosity is reduced by four orders of magnitude (to 1.2 × 10-3 Pa s). This process is reversible and the high and low viscosity states can be cycled several times, through alternating UV and blue light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA