Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397959

RESUMO

Serotonin (5-hydroxytryptamine, 5HT) homeostasis is essential for many physiological processes in the central nervous system and peripheral tissues. Hyperserotonemia, a measurable sign of 5HT homeostasis disruption, can be caused by 5HT-directed treatment of psychiatric and gastrointestinal diseases. Its impact on the long-term balance and function of 5HT in the peripheral compartment remains unresolved and requires further research due to possible effects on human health. We explored the effects of perinatal 5HT imbalance on the peripheral organs responsible for serotonin metabolism-the jejunum, a synthesis site, and the liver, a catabolism site-in adult rats. Hyperserotonemia was induced by subchronic treatment with serotonin precursor 5-hydroxytryptophan (5HTP) or serotonin degradation inhibitor tranylcypromine (TCP). The jejunum and liver were collected on postnatal day 70 and analyzed histomorphometrically. Relative mRNA levels of 5HT-regulating proteins were determined using qRT-PCR. Compared to controls, 5HTP- and TCP-treated rats had a reduced number of 5HT-producing cells and expression of the 5HT-synthesising enzyme in the jejunum, and an increased expression of 5HT-transporter accompanied by karyomegaly in hepatocytes, with these differences being more pronounced in the TCP-treated animals. Here, we report that perinatal 5HT disbalance induced long-term cellular and molecular changes in organs regulating 5HT-metabolism, which may have a negative impact on 5HT availability and function in the periphery. Our rat model demonstrates a link between the developmental abnormalities of serotonin homeostasis and 5HT-related changes in adult life and may be suitable for exploring the neurobiological substrates of vulnerability to behavioral and metabolic disorders, as well as for modeling the adverse effects of the prenatal exposure to 5HT enhancers in the human population.

2.
Biology (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34827095

RESUMO

Immunity is an important component of invasion success since it enables invaders' adaptation to conditions of the novel environment as they expand their range. Immune response of invaders may vary along the invasion range due to encountered parasites/microbial communities, conditions of the local environment, and ecological processes that arise during the range expansion. Here, we analyzed changes in the immune response along the invasion range of one of the most successful aquatic invaders, the signal crayfish, in the recently invaded Korana River, Croatia. We used several standard immune parameters (encapsulation response, hemocyte count, phenoloxidaze activity, and total prophenoloxidaze) to: i) compare immune response of the signal crayfish along its invasion range, and between species (comparison with co-occurring native narrow-clawed crayfish), and ii) analyze effects of specific predictors (water temperature, crayfish abundance, and body condition) on crayfish immune response changes. Immune response displayed species-specificity, differed significantly along the signal crayfish invasion range, and was mostly affected by water temperature and population abundance. Specific immune parameters showed density-dependent variation corresponding to increased investment in them during range expansion. Obtained results offer baseline insights for elucidating the role of immunocompetence in the invasion success of an invertebrate freshwater invader.

3.
Physiol Behav ; 224: 113072, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659392

RESUMO

Adaptive behavior is shaped by the type and intensity of selection pressures coming from the environment, such as predation risk and resource availability, and can be modulated by individual's neuroendocrine profile involving steroid hormones and the brain-stem monoaminergic circuits projecting to forebrain structures. Boldness when faced with a predator and exploration/activity when confronted with a new environment reflect the degree of cautiousness and/or "risk-taking" of an individual. In this study we have explored to which extent two populations of Podarcis siculus occupying different ecological niches: mainland (ML) and an islet (ISL) differ in the level of cautiousness and whether these differences are paralleled by differences in their monoaminergic profiles. Boldness was tested in the field as antipredator behavior, while novel space and object explorations were tested in a laboratory setting in an open field apparatus. Finally, serotonin, dopamine, noradrenaline (NA) and adrenaline (ADR) concentrations were measured in whole brain samples by ELISA. Lizards from ML population spent significantly more time hiding after a predator encounter in the field, displayed lower intensity of novel space exploration in a laboratory setting, and contained significantly higher whole-brain concentrations of NA and ADR than their ISL counterparts. Parallelism between the level of risk-taking behavior and concentrations of neurotransmitters mediating alertness and reaction to stress suggests that the differing environmental factors on ML and ISL may have shaped the degree of cautiousness in the residing lizard populations by affecting the activity of NA/ADR neural circuits.


Assuntos
Lagartos , Norepinefrina , Animais , Encéfalo , Epinefrina , Ilhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA