Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Subcell Biochem ; 97: 151-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779917

RESUMO

Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.


Assuntos
Vesículas Extracelulares , Proteínas Fúngicas , Animais , Parede Celular , Fungos , Interações Hospedeiro-Patógeno , Humanos
2.
Proteomics ; 21(13-14): e2000240, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609009

RESUMO

Extracellular vesicles (EVs) are nano-sized compartments involved in cell communication and macromolecule transport that are well characterized in mammalian organisms. Fungal EVs transport virulence-related cargo and modulate the host immune response, but most work has been focused on human yeast pathogens. Additionally, the study of EVs from filamentous fungi has been hindered by the lack of protein markers and efficient isolation methods. In this study we performed the isolation and proteomic characterization of EVs from the filamentous cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). EVs were recovered from two different growth media, Czapek Dox and Saboraud's dextrose broth, and purified by size-exclusion chromatography. Our results show that the EV proteome changes depending on the growth medium but EV production remains constant. EVs contained proteins involved in polyketide synthesis, cell wall modifications, proteases and potential effectors. These results support a role in modulation of host-pathogen interactions for Fov EVs.


Assuntos
Vesículas Extracelulares , Fusarium , Animais , Cromatografia em Gel , Fungos , Humanos , Doenças das Plantas , Proteômica
3.
Semin Cell Dev Biol ; 88: 107-118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432955

RESUMO

Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.


Assuntos
Defensinas/imunologia , Fungos/efeitos dos fármacos , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/imunologia , Plantas/imunologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Sequência Conservada , Defensinas/genética , Defensinas/farmacologia , Resistência à Doença/genética , Evolução Molecular , Fungos/química , Fungos/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno , Lipídeos/química , Lipídeos/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Plantas/genética , Plantas/microbiologia , Dobramento de Proteína , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
4.
Proteomics ; 19(8): e1800232, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883019

RESUMO

Extracellular vesicles (EVs) perform crucial functions in cell-cell communication. The packaging of biomolecules into membrane-enveloped vesicles prior to release into the extracellular environment provides a mechanism for coordinated delivery of multiple signals at high concentrations that is not achievable by classical secretion alone. Most of the understanding of the biosynthesis, composition, and function of EVs comes from mammalian systems. Investigation of fungal EVs, particularly those released by pathogenic yeast species, has revealed diverse cargo including proteins, lipids, nucleic acids, carbohydrates, and small molecules. Fungal EVs are proposed to function in a variety of biological processes including virulence and cell wall homeostasis with a focus on host-pathogen interactions. EVs also carry signals between fungal cells allowing for a coordinated attack on a host during infection. Research on fungal EVs in still in its infancy. Here a review of the literature thus far with a focus on proteomic analysis is provided with respect to techniques, results, and prospects.


Assuntos
Vesículas Extracelulares/metabolismo , Fungos/metabolismo , Fungos/patogenicidade , Proteômica/métodos , Animais , Proteínas Fúngicas/análise , Interações Hospedeiro-Patógeno , Virulência
5.
Artigo em Inglês | MEDLINE | ID: mdl-31451498

RESUMO

Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.


Assuntos
Antifúngicos/farmacologia , Defensinas/genética , Genes Fúngicos/genética , Plantas/microbiologia , Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Sequência de Aminoácidos , Fusarium/genética , Deleção de Genes , Biblioteca Gênica
6.
Biochim Biophys Acta ; 1858(6): 1099-109, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26896695

RESUMO

Plant defensins interact with phospholipids in bilayers as part of their cytotoxic activity. Solanaceous class II defensins with the loop 5 sequence pattern "S-[KR]-[ILVQ]-[ILVQ]-[KR]-[KR]" interact with PI(4,5)P2. Here, the prototypical defensin of this class, NaD1, is used to characterise the biophysical interactions between these defensins and phospholipid bilayers. Binding of NaD1 to bilayers containing PI(4,5)P2 occurs rapidly and the interaction is very strong. Dual polarisation interferometry revealed that NaD1 does not dissociate from bilayers containing PI(4,5)P2. Binding of NaD1 to bilayers with or without PI(4,5)P2 induced disorder in the bilayer. However, permeabilisation assays revealed that NaD1 only permeabilised liposomes with PI(4,5)P2 in the bilayer, suggesting a role for this protein-lipid interaction in the plasma membrane permeabilising activity of this defensin. No defensins in the available databases have the PI(4,5)P2 binding sequence outside the solanaceous class II defensins, leading to the hypothesis that PI(4,5)P2 binding co-evolved with the C-terminal propeptide to protect the host cell against the effects of the tight binding of these defensins to their cognate lipid as they travel along the secretory pathway. This data has allowed us to develop a new model to explain how this class of defensins permeabilises plasma membranes to kill target cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Lipídeos de Membrana/metabolismo , NADH Desidrogenase/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Bicamadas Lipídicas , Dados de Sequência Molecular , NADH Desidrogenase/química , Ligação Proteica , Homologia de Sequência de Aminoácidos
7.
Antimicrob Agents Chemother ; 60(10): 6302-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503651

RESUMO

The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-ß motif which consists of an α helix and a triple-stranded ß-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants.


Assuntos
Antifúngicos/farmacologia , Defensinas/química , Defensinas/farmacologia , Nicotiana/química , Antifúngicos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Defensinas/genética , Defensinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fusarium/efeitos dos fármacos , Humanos , Lipossomos , Neomicina/farmacologia , Permeabilidade , Fosfatidilinositol 4,5-Difosfato/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
8.
Mol Microbiol ; 92(6): 1188-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24750237

RESUMO

Antimicrobial peptides (AMPs) are promising agents for control of bacterial and fungal infections. Traditionally, AMPs were thought to act through membrane disruption but recent experiments have revealed a diversity of mechanisms. Here we describe a novel antifungal activity for bovine pancreatic trypsin inhibitor (BPTI). BPTI has several features in common with a subset of antimicrobial proteins in that it is small, cationic and stabilized by disulphide bonds. BPTI inhibits growth of Saccharomyces cerevisiae and the human pathogen Candida albicans. Screening of the yeast heterozygous essential deletion collection identified the magnesium transporter Alr1p as a potential BPTI target. BPTI treatment of wild type cells resulted in a lowering of cellular Mg(2+) levels. Populations treated with BPTI had fewer cells in S-phase of the cell cycle and a corresponding increase of cells in G(0)/G(1) and G(2) phases. The same patterns of cell cycle arrest obtained with BPTI were also obtained with the magnesium channel inhibitor hexamine(III)cobalt chloride. Analysis of the growth inhibition of C. albicans revealed that BPTI is inhibiting growth via the same mechanism in the two yeast species. Inhibition of magnesium uptake by BPTI represents a novel mechanism of action for AMPs.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aprotinina/farmacologia , Candida albicans/efeitos dos fármacos , Magnésio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Ciclo Celular/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia
9.
Cell Mol Life Sci ; 71(14): 2651-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24526056

RESUMO

Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.


Assuntos
Antifúngicos/farmacologia , Tolerância a Medicamentos , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Transdução de Sinais , Estresse Fisiológico , Parede Celular/efeitos dos fármacos , Fungos/metabolismo , Fungos/fisiologia , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
10.
Antimicrob Agents Chemother ; 58(5): 2688-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24566173

RESUMO

Cationic antifungal peptides (AFPs) act through a variety of mechanisms but share the common feature of interacting with the fungal cell surface. NaD1, a defensin from Nicotiana alata, has potent antifungal activity against a variety of fungi of both hyphal and yeast morphologies. The mechanism of action of NaD1 occurs via three steps: binding to the fungal cell surface, permeabilization of the plasma membrane, and internalization and interaction with intracellular targets to induce fungal cell death. The targets at each of these three stages have yet to be defined. In this study, the screening of a Saccharomyces cerevisiae deletion collection led to the identification of Agp2p as a regulator of the potency of NaD1. Agp2p is a plasma membrane protein that regulates the transport of polyamines and other molecules, many of which carry a positive charge. Cells lacking the agp2 gene were more resistant to NaD1, and this resistance was accompanied by a decreased uptake of defensin. Agp2p senses and regulates the uptake of the polyamine spermidine, and competitive inhibition of the antifungal activity of NaD1 by spermidine was observed in both S. cerevisiae and the plant pathogen Fusarium oxysporum. The resistance of agp2Δ cells to other cationic antifungal peptides and decreased binding of the cationic protein cytochrome c to agp2Δ cells compared to that of wild-type cells have led to a proposed mechanism of resistance whereby the deletion of agp2 leads to an increase in positively charged molecules at the cell surface that repels cationic antifungal peptides.


Assuntos
Antifúngicos/metabolismo , Membrana Celular/metabolismo , NADH Desidrogenase/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Antifúngicos/farmacologia , Citometria de Fluxo , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Peptídeos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell Mol Life Sci ; 70(19): 3545-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23381653

RESUMO

Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fatores Biológicos/farmacologia , Fungos/efeitos dos fármacos , Animais , Humanos
12.
J Fungi (Basel) ; 10(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38248963

RESUMO

Plant defensins are a large family of small cationic proteins with diverse functions and mechanisms of action, most of which assert antifungal activity against a broad spectrum of fungi. The partial mechanism of action has been resolved for a small number of members of plant defensins, and studies have revealed that many act by more than one mechanism. The plant defensin Ppdef1 has a unique sequence and long loop 5 with fungicidal activity against a range of human fungal pathogens, but little is known about its mechanism of action. We screened the S. cerevisiae non-essential gene deletion library and identified the involvement of the mitochondria in the mechanism of action of Ppdef1. Further analysis revealed that the hyperpolarisation of the mitochondrial membrane potential (MMP) activates ROS production, vacuolar fusion and cell death and is an important step in the mechanism of action of Ppdef1, and it is likely that a similar mechanism acts in Trichophyton rubrum.

13.
Antimicrob Agents Chemother ; 57(8): 3667-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23689717

RESUMO

In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Defensinas/farmacologia , Nicotiana/química , Antifúngicos/química , Compostos de Boro , Defensinas/química , Defensinas/isolamento & purificação , Flores/química , Corantes Fluorescentes , Glicerol , Testes de Sensibilidade Microbiana , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosforilação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos
14.
J Extracell Biol ; 2(5): e82, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938278

RESUMO

Extracellular vesicles (EVs) from human fungal pathogens have been implicated in fungal virulence, yet little is known about their role in the host-pathogen interaction. Progress has been hampered by the lack of a specific marker for fungal EVs that can be used to monitor EV isolation and tracking in biological systems. Here we report the effect of a SUR7 gene knockout on the production, properties, and role of EVs in the virulence of Candida albicans. Sur7 is a component of the membrane compartment of Can1 (MCC) complex and is enriched in the EVs from C. albicans and other fungal species. MCC is a plasma membrane complex which together with the eisosome, a cytoplasmic protein complex, is a key regulator in plasma membrane organisation and plasma membrane associated processes. The SUR7 knockout strain produces smaller EVs than the wild-type (WT) with different protein and carbohydrate cargos. Furthermore, proteins with known roles in Candida pathogenesis were present in WT EVs and absent or diminished in the sur7Δ EVs. We demonstrate that the reduced virulence of the sur7Δ cells can be partially restored with EVs from a WT strain. These findings demonstrate the importance of Sur7-like proteins in the biogenesis of EVs in fungi and enhance our understanding of the role of fungal EVs in human pathogenesis.

15.
Phytochemistry ; 209: 113618, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828099

RESUMO

The membrane interaction characteristics of five antifungal plant defensin peptides: NaD1, and the related HXP4 and L5, as well as NaD2 and the related ZmD32 were studied. These peptides were chosen to cover a broad range of cationic charges with little structural variations, allowing for assessment of the role of charge in their membrane interactions. Membrane permeabilizing activity against C. albicans was confirmed and quantified for benchmarking purposes. Viscoelastic characteristics of the membrane interactions were studied in typical neutral and charged model membranes using quartz crystal microbalance with dissipation (QCM-D. Frequency-dissipation fingerprinting analysis of the QCM-D results revealed that all of the peptides were able to bind to all studied model membranes albeit with slightly different viscoelastic character for each membrane type. However, characteristic disruption patterns were not observed suggesting that the membrane disrupting activity of these defensins is mostly specific to fungal membranes, and that increasing the peptide charge does not enhance their action. The results also show that the presence of specific sterols has a profound effect on the ability of the peptides to disrupt the membrane.


Assuntos
Defensinas , Peptídeos , Defensinas/química
16.
J Fungi (Basel) ; 9(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37233218

RESUMO

Fusarium graminearum (F. graminearum) is a filamentous fungus that infects cereals such as corn, wheat, and barley, with serious impact on yield as well as quality when the grain is contaminated with mycotoxins. Despite the huge impact of F. graminearum on food security and mammalian health, the mechanisms used by F. graminearum to export virulence factors during infection are not fully understood and may involve non-classical secretory pathways. Extracellular vesicles (EVs) are lipid-bound compartments produced by cells of all kingdoms that transport several classes of macromolecules and are implicated in cell-cell communication. EVs produced by human fungal pathogens carry cargo that facilitate infection, leading us to ask whether plant fungal pathogens also deliver molecules that increase virulence via EVs. We examined the metabolome of the EVs produced by F. graminearum to determine whether they carry small molecules that could modulate plant-pathogen interactions. We discovered that EVs from F. graminearum were produced in liquid medium-containing inducers of trichothecene production, but in lower quantities compared to other media. Nanoparticle tracking analysis and cryo-electron microscopy revealed that the EVs were morphologically similar to EVs from other organisms; hence, the EVs were metabolically profiled using LC-ESI-MS/MS. This analysis revealed that EVs carry 2,4-dihydroxybenzophenone (BP-1) and metabolites that have been suggested by others to have a role in host-pathogen interactions. BP-1 reduced the growth of F. graminearum in an in vitro assay, suggesting that F. graminearum might use EVs to limit metabolite self-toxicity.

17.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998916

RESUMO

Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.

18.
Arch Biochem Biophys ; 514(1-2): 50-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21802403

RESUMO

Hephaestin is a multicopper ferroxidase involved in iron absorption in the small intestine. Expressed mainly on the basolateral surface of duodenal enterocytes, hephaestin facilitates the export of iron from the intestinal epithelium into blood by oxidizing Fe(2+) into Fe(3+), the only form of iron bound by the plasma protein transferrin. Structurally, the human hephaestin ectodomain is predicted to resemble ceruloplasmin, the major multicopper oxidase in blood. In addition to its ferroxidase activity, ceruloplasmin was reported to oxidize a wide range of organic compounds including a group of physiologically relevant substrates (biogenic amines). To study oxidation of organic substrates, the human hephaestin ectodomain was expressed in Pichia pastoris. The purified recombinant hephaestin has an average copper content of 4.2 copper atoms per molecule. The K(m) for Fe(2+) of hephaestin was determined to be 3.2µM which is consistent with the K(m) values for other multicopper ferroxidases. In addition, the K(m) values of hephaestin for such organic substrates as p-phenylenediamine and o-dianisidine are close to values determined for ceruloplasmin. However, in contrast to ceruloplasmin, hephaestin was incapable of direct oxidation of adrenaline and dopamine implying a difference in biological substrate specificities between these two homologous ferroxidases.


Assuntos
Aminas Biogênicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Ceruloplasmina/metabolismo , Cobre/análise , Expressão Gênica , Humanos , Ferro/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Oxirredução , Pichia/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
19.
Biometals ; 24(5): 785-809, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21479832

RESUMO

Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer's and Parkinson's disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.


Assuntos
Doença , Homeostase , Saccharomyces cerevisiae/metabolismo , Elementos de Transição/metabolismo , Humanos
20.
J Fungi (Basel) ; 7(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829264

RESUMO

Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens. We separated EVs from Fgr and performed a proteomic analysis to determine if EVs carry proteins with potential roles in pathogenesis. We revealed that protein effectors, which are crucial for fungal virulence, were detected in EV preparations and some of them did not contain predicted secretion signals. Furthermore, a transcriptomic analysis of corn (Zea mays) plants infected by Fgr revealed that the genes of some of the effectors were highly expressed in vivo, suggesting that the Fgr EVs are a mechanism for the unconventional secretion of effectors and virulence factors. Our results expand the knowledge on fungal EVs in plant pathogenesis and cross-kingdom communication, and may contribute to the discovery of new antifungals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA