Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 130(2): 166-180, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34886679

RESUMO

RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.


Assuntos
Polimorfismo de Nucleotídeo Único , Transposição dos Grandes Vasos/genética , Animais , Células Cultivadas , Humanos , Camundongos , Herança Multifatorial , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transposição dos Grandes Vasos/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Peixe-Zebra
2.
BMC Bioinformatics ; 24(1): 49, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792982

RESUMO

BACKGROUND: A wide range of tools are available for the detection of copy number variants (CNVs) from whole-genome sequencing (WGS) data. However, none of them focus on clinically-relevant CNVs, such as those that are associated with known genetic syndromes. Such variants are often large in size, typically 1-5 Mb, but currently available CNV callers have been developed and benchmarked for the discovery of smaller variants. Thus, the ability of these programs to detect tens of real syndromic CNVs remains largely unknown. RESULTS: Here we present ConanVarvar, a tool which implements a complete workflow for the targeted analysis of large germline CNVs from WGS data. ConanVarvar comes with an intuitive R Shiny graphical user interface and annotates identified variants with information about 56 associated syndromic conditions. We benchmarked ConanVarvar and four other programs on a dataset containing real and simulated syndromic CNVs larger than 1 Mb. In comparison to other tools, ConanVarvar reports 10-30 times less false-positive variants without compromising sensitivity and is quicker to run, especially on large batches of samples. CONCLUSIONS: ConanVarvar is a useful instrument for primary analysis in disease sequencing studies, where large CNVs could be the cause of disease.


Assuntos
Variações do Número de Cópias de DNA , Células Germinativas , Sequenciamento Completo do Genoma , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala
3.
Hum Mol Genet ; 29(4): 566-579, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31813956

RESUMO

Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.


Assuntos
Interação Gene-Ambiente , Predisposição Genética para Doença , Genômica/métodos , Cardiopatias Congênitas/patologia , Mutação , Receptor Notch1/genética , Animais , Estudos de Casos e Controles , Feminino , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sequenciamento do Exoma
4.
Am Heart J ; 254: 166-171, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115390

RESUMO

Congenital heart disease (CHD) has a multifactorial aetiology, raising the possibility of an underlying genetic burden, predisposing to disease but also variable expression, including variation in disease severity, and incomplete penetrance. Using whole genome sequencing (WGS), the findings of this study, indicate that complex, critical CHD is distinct from other types of disease due to increased genetic burden in common variation, specifically among established CHD genes. Additionally, these findings highlight associations with regulatory genes and environmental "stressors" in the final presentation of disease.


Assuntos
Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/genética
5.
Am Heart J ; 244: 1-13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670123

RESUMO

BACKGROUND: The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS: Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION: We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.


Assuntos
Cardiopatias Congênitas , Transposição dos Grandes Vasos , Artérias , Encéfalo/diagnóstico por imagem , Cardiopatias Congênitas/genética , Humanos , Recém-Nascido , Transposição dos Grandes Vasos/genética , Sequenciamento Completo do Genoma
6.
Cardiol Young ; 30(3): 346-352, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31920192

RESUMO

BACKGROUND: The causes of CHD are complex and often unknown, leading parents to ask how and why this has happened. Genetic counselling has been shown to benefit these parents by providing information and support; however, most parents currently do not receive this service. This study aimed to develop a brochure to determine whether an information resource could improve parents' knowledge about CHD causation and inheritance and increase psychosocial functioning. METHODS: In development, the resource was assessed against several readability scales and piloted. Parents of children attending preadmission clinic for surgery were included. Assessments occurred pre- and post-receiving the information resource using a purpose-designed knowledge measure and validated psychological measures. RESULTS: Participant's (n = 52) knowledge scores increased significantly from the pre-questionnaire ( ${\overline x}\, = \,5/10$ , sd = 2.086) to post-questionnaire ( $\overline x\, = \,7.88/10$ , sd = 2.094, p < 0.001), with all aware that CHD can be caused by genetic factors after reading the brochure. Perceived personal control also increased from pre- ( $\overline x\, = \,11.856/18$ , sd = 4.339) to post-brochure ( $\overline x\, = \,14.644/18$ , sd = 3.733, p < 0.001), and many reported reduced feelings of guilt. No negative emotional response to the brochure was reported. The information provided was considered relevant (88%), reassuring (86%), and 88% would recommend the brochure to other parents. However, some wanted more emotional support and assistance in what to tell their child. CONCLUSIONS: Use of the information resource significantly enhanced parents' knowledge of CHD causation and increased their psychosocial functioning. It is a valuable resource in the absence of genetic counselling; however, it should not replace formal genetic counselling when required.


Assuntos
Aconselhamento Genético/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/psicologia , Pais/psicologia , Educação de Pacientes como Assunto , Adulto , Austrália , Feminino , Aconselhamento Genético/métodos , Cardiopatias Congênitas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Folhetos , Inquéritos e Questionários , Adulto Jovem
7.
Heart Lung Circ ; 29(1): 5-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31735685

RESUMO

The Fontan circulation describes the circulatory state resulting from an operation in congenital heart disease where systemic venous return is directed to the lungs without an intervening active pumping chamber. As survival increases, so too does recognition of the potential health challenges. This document aims to allow clinicians, people with a Fontan circulation, and their families to benefit from consensus agreement about management of the person with a Fontan circulation. The document was crafted with input from a multidisciplinary group of health care providers as well as individuals with a Fontan circulation and families. It is hoped that the shared common vision of long-term wellbeing will continue to drive improvements in care and quality of life in this patient population and eventually translate into improved survival. KEYPOINTS.


Assuntos
Cardiopatias Congênitas/mortalidade , Cardiopatias Congênitas/terapia , Sistema de Registros , Austrália/epidemiologia , Humanos , Nova Zelândia/epidemiologia , Sociedades Médicas
8.
Genet Med ; 21(5): 1111-1120, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293987

RESUMO

PURPOSE: Congenital heart disease (CHD) affects up to 1% of live births. However, a genetic diagnosis is not made in most cases. The purpose of this study was to assess the outcomes of genome sequencing (GS) of a heterogeneous cohort of CHD patients. METHODS: Ninety-seven families with probands born with CHD requiring surgical correction were recruited for genome sequencing. At minimum, a proband-parents trio was sequenced per family. GS data were analyzed via a two-tiered method: application of a high-confidence gene screen (hcCHD), and comprehensive analysis. Identified variants were assessed for pathogenicity using the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines. RESULTS: Clinically relevant genetic variants in known and emerging CHD genes were identified. The hcCHD screen identified a clinically actionable variant in 22% of families. Subsequent comprehensive analysis identified a clinically actionable variant in an additional 9% of families in genes with recent disease associations. Overall, this two-tiered approach provided a clinically relevant variant for 31% of families. CONCLUSIONS: Interrogating GS data using our two-tiered method allowed identification of variants with high clinical utility in a third of our heterogeneous cohort. However, association of emerging genes with CHD etiology, and development of novel technologies for variant assessment and interpretation, will increase diagnostic yield during future reassessment of our GS data.


Assuntos
Testes Genéticos/métodos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Estudos de Coortes , Exoma/genética , Família , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Mutação/genética , Pais , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
9.
Am Heart J ; 201: 33-39, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910053

RESUMO

BACKGROUND: Up to 20% of children with congenital heart disease (CHD) undergoing cardiac surgery develop neurodevelopmental disabilities (NDD), with some studies reporting persistent impairment. Recent large-scale studies have demonstrated shared genetic mechanisms contributing to CHD and NDD. In this study, a targeted approach was applied to assess direct clinical applicability of this information. METHODS: A gene panel comprising 148 known CHD and/or NDD genes was used to sequence 15 patients with CHD + NDD, 15 patients with CHD, and 15 healthy controls. The number and types of variants between the 3 groups were compared using Poisson log-linear regression, and the SNP-set (Sequence) Kernel Association Test-Optimized was used to conduct single-gene and gene-pathway burden analyses. RESULTS: A significant increase in rare (minor allele frequency < 0.01) and novel variants was identified between the CHD + NDD cohort and controls, P < .001 and P = .001, respectively. There was also a significant increase in rare variants in the CHD cohort compared with controls (P = .04). Rare variant burden analyses implicated pathways associated with "neurotransmitters," "axon guidance," and those incorporating "RASopathy" genes in the development of NDD in CHD patients. CONCLUSIONS: These findings suggest that an increase in novel and rare variants in known CHD and/or NDD genes is associated with the development of NDD in patients with CHD. Furthermore, burden analyses point toward rare variant burden specifically in pathways related to brain development and function as contributors to NDD. Although promising variants and pathways were identified, further research, utilizing whole-genome approaches, is required prior to demonstrating clinical utility in this patient group.


Assuntos
DNA/genética , Cardiopatias Congênitas/genética , Transtornos do Neurodesenvolvimento/genética , Polimorfismo de Nucleotídeo Único , Procedimentos Cirúrgicos Cardíacos , Feminino , Seguimentos , Frequência do Gene , Cardiopatias Congênitas/cirurgia , Humanos , Recém-Nascido , Masculino , Estudos Retrospectivos
10.
Am J Hum Genet ; 91(3): 489-501, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22939634

RESUMO

Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10(-5)). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ~5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ~4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.


Assuntos
Variações do Número de Cópias de DNA , Deleção de Genes , Cardiopatias Congênitas/genética , Criança , Cromossomos Humanos Par 15 , Cromossomos Humanos Par 8 , Pai , Feminino , Dosagem de Genes , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
12.
Hum Mol Genet ; 21(7): 1513-20, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22199024

RESUMO

Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ~1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9-107.6); P = 2.2 × 10(-7)], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4-22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100-200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8-64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 1 , Conexinas/genética , Cardiopatias Congênitas/genética , Tetralogia de Fallot/genética , Duplicação Gênica , Humanos , Fenótipo , Proteína alfa-5 de Junções Comunicantes
13.
Transl Pediatr ; 12(4): 768-786, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37181016

RESUMO

Neurodevelopmental disability (NDD) is recognised as one of the most common comorbidities in children with congenital heart disease (CHD) and is associated with altered brain structure and growth throughout the life course. Causes and contributors underpinning the CHD and NDD paradigm are not fully understood, and likely include innate patient factors, such as genetic and epigenetic factors, prenatal haemodynamic consequences as a result of the heart defect, and factors affecting the fetal-placental-maternal environment, such as placental pathology, maternal diet, psychological stress and autoimmune disease. Additional postnatal factors, including the type and complexity of disease and other clinical factors such as prematurity, peri-operative factors and socioeconomic factors are also expected to play a role in determining the final presentation of the NDD. Despite significant advances in knowledge and strategies to optimise outcomes, the extent to which adverse neurodevelopment can be modified remains unknown. Understanding biological and structural phenotypes associated with NDD in CHD are vital for understanding disease mechanisms, which in turn will advance the development of effective intervention strategies for those at risk. This review article summarises our current knowledge surrounding biological, structural, and genetic contributors to NDD in CHD and describes avenues for future research; highlighting the need for translational studies that bridge the gap between basic science and clinical practice.

14.
Int J Popul Data Sci ; 8(1): 2150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38414539

RESUMO

Introduction: Contemporary care of congenital heart disease (CHD) is largely standardised, however there is heterogeneity in post-surgical outcomes that may be explained by genetic variation. Data linkage between a CHD biobank and routinely collected administrative datasets is a novel method to identify outcomes to explore the impact of genetic variation. Objective: Use data linkage to identify and validate patient outcomes following surgical treatment for CHD. Methods: Data linkage between clinical and biobank data of children born from 2001-2014 that had a procedure for CHD in New South Wales, Australia, with hospital discharge data, education and death data. The children were grouped according to CHD lesion type and age at first cardiac surgery. Children in each 'lesion/age at surgery group' were classified into 'favourable' and 'unfavourable' cardiovascular outcome groups based on variables identified in linked administrative data including; total time in intensive care, total length of stay in hospital, and mechanical ventilation time up to 5 years following the date of the first cardiac surgery. A blind medical record audit of 200 randomly chosen children from 'favourable' and 'unfavourable' outcome groups was performed to validate the outcome groups. Results: Of the 1872 children in the dataset that linked to hospital or death data, 483 were identified with a 'favourable' cardiovascular outcome and 484 were identified as having a 'unfavourable' cardiovascular outcome. The medical record audit found concordant outcome groups for 182/192 records (95%) compared to the outcome groups categorized using the linked data. Conclusions: The linkage of a curated biobank dataset with routinely collected administrative data is a reliable method to identify outcomes to facilitate a large-scale study to examine genetic variance. These genetic hallmarks could be used to identify patients who are at risk of unfavourable cardiovascular outcomes, to inform strategies for prevention and changes in clinical care.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiopatias Congênitas , Criança , Humanos , Austrália , Bancos de Espécimes Biológicos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Genômica , Cardiopatias Congênitas/epidemiologia
15.
Med J Aust ; 197(3): 155-9, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22860792

RESUMO

About 80% of congenital heart disease (CHD) is multifactorial and arises through various combinations of genetic and environmental contributors. About 20% of cases can be attributed to chromosomal anomalies, Mendelian syndromes, non-syndromal single gene disorders or teratogens. Down syndrome and velocardiofacial syndrome are the most commonly seen syndromes in patients with CHD. To date, more than 30 genes have been linked to non-syndromal forms of CHD. Their contribution to CHD remains unknown but is presumed to be relatively small. There is limited evidence for the contribution of specific environmental factors to CHD causation. However, folic acid supplementation in the pre- and peri-conception period, ensuring rubella vaccination has been completed before pregnancy, and maintaining good glycaemic control in mothers with diabetes may reduce the risk of CHD in infants. Recurrence risks vary between different types of non-syndromal CHD with multifactorial inheritance, and can be as high as 10% when two or more siblings are affected. Generally, the recurrence risk increases if a parent rather than a sibling is affected, particularly when the affected parent is the mother. Individualised recurrence risks can be generated for members of families affected by CHD after obtaining a detailed family history, including accurate cardiac diagnoses for all affected members. High-throughput genetic techniques can accelerate gene discovery and improve our ability to provide individualised genetic counselling.


Assuntos
Cardiopatias Congênitas/etiologia , Aberrações Cromossômicas , Meio Ambiente , Doenças Genéticas Inatas/genética , Cardiopatias Congênitas/genética , Humanos , Fatores de Risco , Teratogênicos
16.
Trends Cardiovasc Med ; 32(5): 311-319, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964404

RESUMO

Genetic and genomic testing in pediatric CHD is becoming increasingly routine, and can have important psychosocial, clinical and reproductive implications. In this paper we highlight important challenges and considerations when providing genetics consults and testing in pediatric CHD and illustrate the role of a dedicated CHD genetics clinic. Key lessons include that a) a genetic diagnosis can have clinical utility that justifies testing early in life, b) adequate genetic counselling is crucial to ensure families are supported, understand the range of possible results, and are prepared for new or unexpected health information, and c) further integration of the clinical genetics and cardiology workflows will be required to effectively manage the burgeoning information arising from genetic testing. Our experience demonstrates that a dedicated CHD genetics clinic is a valuable addition to a multidisciplinary team providing care to children with CHD.


Assuntos
Testes Genéticos , Cardiopatias Congênitas , Criança , Aconselhamento Genético , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/terapia , Humanos , Encaminhamento e Consulta
17.
Am J Med Genet A ; 155A(10): 2416-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22043484

RESUMO

The majority of congenital heart disease (CHD) occurs as a sporadic finding, with a minority of cases associated with a known genetic abnormality. Combinations of genetic and environmental factors are implicated, with the recent and intriguing hypothesis that an apparently high rate of somatic mutations might explain some sporadic CHD. We used samples of right ventricular myocardium from patients undergoing surgical repair of tetralogy of Fallot (TOF) and hypoplastic left heart (HLH) to examine the incidence of somatic mutation in cardiac tissue. TOF is a common form of cyanotic CHD, occurring in 3.3 per 10,000 live births. HLH is a rare defect in which the left side of the heart is severely under-developed. Both are severe malformations whose genetic etiology is largely unknown. We carried out direct sequence analysis of the NKX2­5 and GATA4 genes from fresh frozen cardiac tissues and matched blood samples of nine TOF patients. Analysis of NKX2­5, GATA4, and HAND1 was performed from cardiac tissue of 24 HLH patients and three matched blood samples. No somatic or germline mutations were identified in the TOF or HLH patients. Although limited by sample size, our study suggests that somatic mutations in NKX2­5 and GATA4 are not a common cause of isolated TOF or HLH.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Transcrição GATA4/genética , Proteínas de Homeodomínio/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Mutação/genética , Tetralogia de Fallot/genética , Fatores de Transcrição/genética , Sequência de Bases , DNA/sangue , DNA/metabolismo , Proteína Homeobox Nkx-2.5 , Humanos , Dados de Sequência Molecular , Miocárdio/metabolismo , Análise de Sequência de DNA
18.
Open Heart ; 6(2): e000998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354955

RESUMO

It is established that neurodevelopmental disability (NDD) is common in neonates undergoing complex surgery for congenital heart disease (CHD); however, the trajectory of disability over the lifetime of individuals with CHD is unknown. Several 'big issues' remain undetermined and further research is needed in order to optimise patient care and service delivery, to assess the efficacy of intervention strategies and to promote best outcomes in individuals of all ages with CHD. This review article discusses 'gaps' in our knowledge of NDD in CHD and proposes future directions.

20.
Congenit Heart Dis ; 13(3): 401-406, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29399970

RESUMO

OBJECTIVE: We previously identified a pathogenic germline DICER1 variant in a child with transposition of the great arteries who was a member of a family with DICER1 syndrome. In view of a report linking Dicer1 knockout in murine cardiomyocytes to cardiac outflow defects, we investigated the involvement of DICER1 in transposition of the great arteries. DESIGN: We used Fluidigm access array followed by next generation sequencing to screen for variants in the coding exons, their exon/intron boundaries and the 3' untranslated region of DICER1 in patient DNA. CASES: Germline DNA was collected from 129 patients with either sporadic or familial forms of transposition of the great arteries from two sites in Australia and Italy. RESULTS: Most cases (85%) did not have any germline DICER1 variants. In the remaining 15% of cases, we identified 16 previously reported variants (5 synonymous, 6 intronic, and 5 missense) and 2 novel variants (1 intronic and 1 missense). None of the identified variants were predicted to be pathogenic. CONCLUSIONS: Here, we report that neither likely pathogenic nor pathogenic variants in DICER1 appear to play a major role in transposition of the great arteries.


Assuntos
RNA Helicases DEAD-box/genética , DNA/genética , Predisposição Genética para Doença , Mutação , Ribonuclease III/genética , Transposição dos Grandes Vasos/genética , Criança , RNA Helicases DEAD-box/metabolismo , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Incidência , Itália/epidemiologia , Masculino , New South Wales/epidemiologia , Linhagem , Ribonuclease III/metabolismo , Transposição dos Grandes Vasos/epidemiologia , Transposição dos Grandes Vasos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA