Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Mol Med ; 24(23): 13853-13862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124775

RESUMO

Cardiac fibroblasts are able to sense the rigidity of their environment. The present study examines whether the stiffness of the substrate in cardiac fibroblast culture can influence the release of interleukin-6 (IL-6), interleukin-11 (IL-11) and soluble receptor of IL-6 (sIL-6R). It also examines the roles of integrin α2ß1 activation and intracellular signalling in these processes. Cardiac fibroblasts were cultured on polyacrylamide gels and grafted to collagen, with an elasticity of E = 2.23 ± 0.8 kPa (soft gel) and E = 8.28 ± 1.06 kPa (stiff gel, measured by Atomic Force Microscope). Flow cytometry and ELISA demonstrated that the fibroblasts cultured on the soft gel demonstrated higher expression of the α2 integrin subunit and increased α2ß1 integrin count and released higher levels of IL-6 and sIL-6R than those on the stiff gel. Substrate elasticity did not modify fibroblast IL-11 content. The silencing of the α2 integrin subunit decreased the release of IL-6. Similar effects were induced by TC-I 15 (an α2ß1 integrin inhibitor). The IL-6 levels in the serum and heart were markedly lower in α2 integrin-deficient mice B6.Cg-Itga2tm1.1Tkun/tm1.1Tkun than wild type. Inhibition of Src kinase by AZM 475271 modifies the IL-6 level. sIL-6R secretion is not dependent on α2ß1 integrin. Conclusion: The elastic properties of the substrate influence the release of IL-6 by cardiac fibroblasts, and this effect is dependent on α2ß1 integrin and kinase Src activation.


Assuntos
Fibroblastos/metabolismo , Integrina alfa2beta1/metabolismo , Interleucina-6/biossíntese , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/ultraestrutura , Citometria de Fluxo , Expressão Gênica , Inativação Gênica , Humanos , Integrina alfa2beta1/genética , Masculino , Fenômenos Mecânicos , Camundongos , Camundongos Transgênicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
2.
Eur Biophys J ; 49(6): 485-495, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803311

RESUMO

The identification of cancer-related changes in cells and tissues based on the measurements of elastic properties using atomic force microscopy (AFM) seems to be approaching clinical application. Several limiting aspects have already been discussed; however, still, no data have shown how specific AFM probe geometries are related to the biomechanical evaluation of cancer cells. Here, we analyze and compare the nanomechanical results of mechanically homogenous polyacrylamide gels and heterogeneous bladder cancer cells measured using AFM probes of various tip geometry, including symmetric and non-symmetric pyramids and a sphere. Our observations show large modulus variability aligned with both types of AFM probes used and with the internal structure of the cells. Altogether, these results demonstrate that it is possible to differentiate between compliant and rigid samples of kPa elasticity; however, simultaneously, they highlight the strong need for standardized protocols for AFM-based elasticity measurements if applied in clinical practice including the use of a single type of AFM cantilever.


Assuntos
Hidrogéis/química , Microscopia de Força Atômica/métodos , Linhagem Celular , Módulo de Elasticidade , Humanos , Fenômenos Mecânicos
3.
Anal Chem ; 91(15): 9885-9892, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310097

RESUMO

The multistep character of cancer progression makes it difficult to define a unique biomarker of the disease. Interdisciplinary approaches, combining various complementary techniques, especially those operating at a nanoscale level, potentially accelerate characterization of cancer cells or tissue properties. Here, we study a relation between the surface and biomechanical properties of melanoma cells, measured by mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). In total, seven cell lines have been studied. Six of them were melanoma cells derived from various stages of tumor progression: (1) WM115 cells derived from a 55 year old female skin melanoma at a vertical growth phase (VGP) in the primary melanoma site, (2) WM793 cells established from the vertical growth phase (VGP) of a primary skin melanoma lesion, (3) WM266-4 cells established from a cutaneous skin metastasis detected in the same patient as WM115 cells, (4) WM239 cells derived from a cutaneous skin metastasis, (5) 1205Lu cells originated from a lung metastasis diagnosed in the same patient as WM793 cells, and (6) A375P-cells were derived from a solid malignant tumor located in the lung. As a reference cell line, human epidermal melanocytes from adult skin (primary cell line HEMa-LP) were used. Results reveal low, medium, and large deformability of melanoma cells originating from vertical growth phase (VGP), and skin and lung metastasis, respectively. These changes were accompanied by distinct outcome from principal component analysis (PCA). In relation to VGP melanoma cells, cells from skin and lung metastasis reveal similar or significantly different surface properties. The largest deformability difference observed for cells from VGP and lung metastasis was accompanied by the largest separation of unspecific changes in their surface properties. In this way, we show the evidence that biomechanical and surface biochemical properties of cells change in parallel, indicating a potential of being used as nanobiophysical fingerprints of melanoma progression.


Assuntos
Melanoma/metabolismo , Fenômenos Biofísicos , Linhagem Celular Tumoral , Diagnóstico Diferencial , Progressão da Doença , Feminino , Humanos , Melanoma/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias
4.
Anal Biochem ; 511: 52-60, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318241

RESUMO

There are several techniques like time of flight secondary ion mass spectrometry (ToF SIMS) that require a special protocol for preparation of biological samples, in particular, those containing single cells due to high vacuum conditions that must be kept during the experiment. Frequently, preparation methodology involves liquid nitrogen freezing what is not always convenient. In our studies, we propose and validate a protocol for preparation of single cells. It consists of four steps: (i) paraformaldehyde fixation, (ii) salt removal, (iii) dehydrating, and (iv) sample drying under ambient conditions. The protocol was applied to samples with single melanoma cells i.e. WM115 and WM266-4 characterized by similar morphology. The surface and internal structures of cells were monitored using atomic force, scanning electron and fluorescent microscopes, used to follow any potential protocol-induced alterations. To validate the proposed methodology for sample preparation, ToF SIMS experiments were carried out using C60(+) cluster ion beam. The applied principal component analysis (PCA) revealed that chemical changes on cell surface of melanoma cells were large enough to differentiate between primary and secondary tumor sites. Subject category: Mass spectrometry.


Assuntos
Manejo de Espécimes/métodos , Espectrometria de Massa de Íon Secundário/métodos , Linhagem Celular Tumoral , Humanos
5.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443716

RESUMO

The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.


Assuntos
Amoeba , Humanos , Amoeba/metabolismo , Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo
6.
Materials (Basel) ; 13(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050502

RESUMO

The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively. The number of fibroblasts, as well as their shape and the arrangement, strongly depends on the mechanical properties of the substrate. Moreover, normal fibroblasts remain more rigid as compared to their fibrotic counterparts, which may indicate the impairments of IPF-derived fibroblasts induced by the fibrosis process. The chemical properties of normal and IPF-derived lung fibroblasts inspected using time-of-flight secondary ion mass spectrometry, and analyzed complexly with principal component analysis (PCA), show a significant difference in the distribution of cholesterol and phospholipids. Based on the observed distinctions between healthy and fibrotic cells, the mechanical properties of cells may serve as prospective diagnostic biomarkers enabling fast and reliable identification of idiopathic pulmonary fibrosis (IPF).

7.
Sci Rep ; 7(1): 5117, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698636

RESUMO

We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions.


Assuntos
Hidrogéis/química , Microscopia de Força Atômica/métodos , Animais , Cães , Módulo de Elasticidade , Células Madin Darby de Rim Canino , Nanotecnologia , Reprodutibilidade dos Testes , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA