Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(13): e2122185119, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35316137

RESUMO

SignificanceAn invisibility cloak to conceal objects from an outside observer has long been a subject of interest in metamaterial design. While cloaks have been manufactured for optical, thermal, and electric fields, limited progress has been made for mechanical cloaks. Most existing designs rely on mapping-based methods, which have so far been limited to special base cells and a narrow selection of voids with simple shapes. In this study, we develop a fundamentally different approach by exploiting data-driven designs to offer timely, customized solutions to mechanical cloaking that were previously difficult to obtain. Through simulations and experimental validations, we show that excellent cloaking performance can be achieved for various boundary conditions, shapes of voids, base cells, and even multiple voids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA