Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Chemistry ; : e202401750, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877823

RESUMO

Trimethyl phosphate (TMP), an organophosphorus compound (OPC), is a promising fire-retardant candidate for lithium-ion battery (LIB) electrolytes to mitigate fire spread. This study aims to understand the mechanism of TMP unimolecular thermal decomposition to support the integration of a TMP chemical kinetic model into a LIB electrolyte surrogate model. Reactive intermediates and products of TMP thermal decomposition were experimentally detected using vacuum ultraviolet (VUV) synchrotron radiation and double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy. Phosphorus-containing intermediates such as PO, HPO and HPO2 were identified. Sampling effects could successfully be obviated thanks to photoion imaging, which also showed evidence for isomerization reactions upon wall collisions in the ionization chamber. Quantum chemical calculations performed for the unimolecular decomposition of TMP revealed for the first time that isomerization channels via hydrogen and methyl transfer (barrier heights of 65.9 and 72.6 kcal/mol, respectively) are the lowest-energy primary steps of TMP decomposition followed by CH3OH/CH3/CH2O or dimethyl ether (DME) production, respectively. We found an analogous DME production channel in the unimolecular decomposition of dimethyl methylphosphonate (DMMP), another important OPC fire-retardant additive with a similar molecular structure to TMP, which are not included in currently available chemical kinetic models.

2.
Angew Chem Int Ed Engl ; 63(17): e202401060, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451557

RESUMO

C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.

3.
J Am Chem Soc ; 145(14): 7910-7917, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36867720

RESUMO

Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.

4.
Chemphyschem ; 24(20): e202300359, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37465875

RESUMO

Understanding how isomerism influences photoelectron spectra helps in the assignment and analysis of reactive mixtures, especially for heterocycles with numerous isomers. Threshold photoelectron spectra of lutidyl radical isomers, i. e., benzyl derivatives with a nitrogen heteroatom and a methyl substituent, are recorded using vacuum ultraviolet synchrotron radiation. The radicals are produced by flash pyrolysis from aminomethyl methylpyridine precursors. Experimental ionization energies are determined to be 7.54, 7.50, and 7.45 eV for 2,4-, 2,6- and 3,5-lutidyl, respectively, in excellent agreement with composite method calculations. Franck-Condon simulations aid the TPES assignment but are also shown to exhibit artifacts if large-amplitude motions, notably the methyl internal rotation are assumed to be active in the double harmonic approximation. Based on calculated adiabatic ionization energies (AIE) of benzyl, picolyl, and xylyl radicals, the N and CH3 substituent effects are found to be additive, position-dependent and decrease in the para>ortho≳meta order in magnitude with the nitrogen heteroatom increasing and the methyl substituent decreasing the AIE. These effects are discussed in light of the charge distribution upon ionization. The additivity of the substituent effects also helps predict the influence of substituents on the binding energy of the unpaired electron in analogous radicals.

5.
Phys Chem Chem Phys ; 25(10): 7383-7393, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826403

RESUMO

Iodomethane yields ten fragment ions after valence photoionization, in part by multiple dissociation pathways for each, thanks to a plethora of electronic states available in the parent ion as well as in the fragments. The comprehensive breakdown diagram from 11 eV to the double ionization onset, i.e., 26.7 eV, is recorded at high resolution using double imaging photoelectron photoion coincidence spectroscopy with synchrotron vacuum ultraviolet radiation. Based on fragment ion groupings, the changing branching ratios between these groups and between fragment ions within each group, as well as ancillary thermochemistry, we provide an overview of the dissociation pathways at play. Statistical and impulsive dissociations are identified using kinetic energy release analysis. Finally, a newly observed regime change is discussed in double ionization, whereby coincident H+ + I+ formation dominates over a 4 eV photon energy range, outcompeting the normally prevailing CH3+ + I+ channel.

6.
Phys Chem Chem Phys ; 25(42): 29070-29079, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861750

RESUMO

The threshold photoionization and dissociative ionization of benzonitrile (C6H5CN) were studied using double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy at the Vacuum Ultraviolet (VUV) beamline of the Swiss Light Source (SLS). The threshold photoelectron spectrum was recorded from 9.6 to 12.7 eV and Franck-Condon simulations of ionization into the ionic ground state, X̃+, as well as the B̃+ and C̃+ states were performed to assign the observed vibronic structures. The adiabatic ionization energies of the X̃+, B̃+ and C̃+ states are determined to be (9.72 ± 0.02), (11.85 ± 0.03) and, tentatively, (12.07 ± 0.04) eV, respectively. Threshold ionization mass spectra were recorded from 13.75 to 19.75 eV and the breakdown diagram was constructed by plotting the fractional abundances of the parent ion and ionic dissociation products as a function of photon energy. The seven lowest energy dissociative photoionization channels of benzonitrile were found to yield CN˙ + c-C6H5+, HCN + C6H4˙+, C2H4 + HC5N˙+, HC3N + C4H4˙+, H2C3N˙ + C4H3+, CH2CHCN + C4H2˙+ and H2C4N˙ + c-C3H3+. HCN loss from the benzonitrile cation is the dominant dissociation channel from the dissociation onset of up to 18.1 eV and CH2CHCN loss becomes dominant from 18.1 eV and up. We present extensive potential energy surface calculations on the C6H5CN˙+ surface to rationalize the detected products. The breakdown diagram and time-of-flight mass spectra are fitted using a Rice-Ramsperger-Kassel-Marcus statistical model. Anchoring the fit to the CBS-QB3 result (3.42 eV) for the barrier to HCN loss, we obtained experimental dissociation barriers for the products of 4.30 eV (CN loss), 5.53 eV (C2H4 loss), 4.33 eV (HC3N loss), 5.15 eV (H2C3N loss), 4.93 eV (CH2CHCN loss) and 4.41 eV (H2C4N loss). We compare our work to studies of the electron-induced dissociative ionization of benzonitrile and isoelectronic phenylacetylene (C8H6), as well as the VUV-induced dissociation of protonated benzonitrile (C6H5CNH+). Also, we discuss the potential role of barrierless association reactions found for some of the identified fragments as a source of benzonitrile(˙+) in interstellar chemistry and in Titan's atmosphere.

7.
J Phys Chem A ; 127(3): 661-670, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36630284

RESUMO

We studied the threshold photoionization and dissociative ionization of para-, meta-, and ortho-anisaldehyde by photoelectron photoion coincidence spectroscopy in the 8.20-19.00 eV photon energy range. Vertical ionization energies by equation of motion-ionization potential-coupled cluster singles and doubles (EOM-IP-CCSD) calculations reproduce the photoelectron spectral features in all three isomers. The dissociative photoionization (DPI) pathways of para- and meta-anisaldehyde are similar and differ markedly from those of ortho-anisaldehyde. In the para and meta isomers, the lowest-energy DPI channel corresponds to hydrogen atom loss to form the C8H7O2+ fragment at m/z 135, which undergoes sequential dissociation processes at higher energies, such as carbon monoxide loss to C7H7O+ (m/z 107) and further, sequential CH3, CH2O, and CH2CO losses to produce C6H4O+ (m/z 92), C6H5+ (m/z 77), and C5H5+ (m/z 65), respectively. Carbon monoxide loss from the parent ions, yielding C7H8O+ (m/z 108), is a subordinate dissociation channel parallel to H atom loss. At higher energies, it also gives rise to sequential formaldehyde (CH2O) loss to produce C6H6+ (m/z 78). In the ortho-anisaldehyde cation, the vicinity of the aldehyde and methoxy groups opens up low-energy hydrogen-transfer processes, which allow for seven fragmentation channels to compete effectively with the H- and CO-loss channels. Thus, the fragmentation mechanism changes considerably, thanks to the steric interaction of the substituents. Functional group interactions, in particular H transfer pathways, must therefore be considered when predicting the isomer-specific unimolecular decomposition mechanism of cationic and neutral species, as well as mass spectra for isomers.

8.
Chimia (Aarau) ; 77(3): 132-138, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047816

RESUMO

Understanding the reaction mechanism is critical yet challenging in heterogeneous catalysis. Reactive intermediates, e.g., radicals and ketenes, are short-lived and often evade detection. In this review, we summarize recent developments with operando photoelectron photoion coincidence (PEPICO) spectroscopy as a versatile tool capable of detecting elusive intermediates. PEPICO combines the advantages of mass spectrometry and the isomer-selectivity of threshold photoelectron spectroscopy. Recent applications of PEPICO in understanding catalyst synthesis and catalytic reaction mechanisms involving gaseous and surface-confined radical and ketene chemistry will be summarized.

9.
Faraday Discuss ; 238(0): 645-664, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822493

RESUMO

The unimolecular isomerisation of the prompt propargyl + propargyl "head-to-head" adduct, 1,5-hexadiyne, to fulvene and benzene by the 3,4-dimethylenecyclobut-1-ene (DMCB) intermediate (all C6H6) was studied in the high-pressure limit by threshold photoelectron (TPE) spectroscopy. TPE spectra (TPES) were recorded with photoelectron photoion coincidence spectroscopy using synchrotron vacuum ultraviolet radiation. Reference TPES, obtained using pure compounds or judiciously extracted from the pyrolysis data, served as basis functions for pyrolysis quantification. From these spectra, we measured a revised fulvene ionisation energy of 8.401 ± 0.005 eV. Temperature-dependent pyrolysis spectra were decomposed using these basis functions. The basis function coefficients were converted to product yields relying on assumed integral threshold photoionisation cross sections obtained by three, partially mutually exclusive sets of assumptions. Thus, the product yields of DMCB, fulvene, and benzene have been established, as well as their uncertainty. The derived mole fractions are consistent with modeling based on the C6H6 potential and RRKM master equation model of Miller and Klippenstein [J. Phys. Chem. A, 2003, 107, 7783]. Although our results are fully consistent with the parallel isomerisation pathways to benzene and fulvene found by Miller and Klippenstein, we observe the onset of fulvene at a lower temperature than that of the onset of benzene, in agreement with the master equation model but in contrast to the previous experiments of Stein et al. [Proc. Combust. Inst., 1990, 23, 85]. This work promotes the use of photoion mass-selected threshold photoelectron spectroscopy as a rapid, sensitive, isomer-selective, and quantitative detection tool among the panoply of established analytical techniques.

10.
Phys Chem Chem Phys ; 24(3): 1437-1446, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984425

RESUMO

The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00-10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH3OH)nH+. However, the stable dimer parent ion (CH3OH)2+ is readily detected below the dissociation threshold to yield the dominant CH3OH2+ fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH3OH)2+ parent ion dissociates via five parallel channels at low internal energies. The loss of both CH2OH and CH3O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH3(H)OH+⋯CH2OH ion, the precursor to the CH2OH-, H2O-, and CH3-loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH3OH2+, which explains the dominance of the protonated methanol fragment ion in the mass spectrum.

11.
Phys Chem Chem Phys ; 24(6): 3655-3663, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080222

RESUMO

We report the absolute photoionization cross section (PICS) of fulvenone and 2-carbonyl cyclohexadienone, two crucial ketene intermediates in lignin pyrolysis, combustion and organic synthesis. Both species were generated in situ by pyrolyzing salicylamide and dectected via imaging photoelectron photoion coincidence spectroscopy. In a deamination reaction, salicylamide loses ammonia yielding 2-carbonyl cyclohexadienone, a ketoketene, which further decarbonylates at higher pyrolysis temperatures to form fulvenone. We recorded the threshold photoelectron spectrum of the ketoketene and assigned the ground state (X̃+2A'' ← X̃1A') and excited state (Ã+2A' ← X̃1A') bands with the help of Franck-Condon simulations. Adiabatic ionization energies are 8.35 ± 0.01 and 9.19 ± 0.01 eV. In a minor reaction channel, the ketoketene isomerizes to benzpropiolactone, which decomposes subsequently to benzyne by CO2 loss. Potential energy surface and RRKM rate constant calculations agree with our experimental observations that the decarbonylation to fulvenone outcompetes the decarboxylation to benzyne by almost two orders of magnitude. The absolute PICS of fulvenone at 10.48 eV was determined to be 18.8 ± 3.8 Mb using NH3 as a calibrant. The PICS of 2-carbonyl cyclohexadienone was found to be 21.5 ± 8.6 Mb at 9 eV. Our PICS measument will enable the quantification of reactive ketenes in lignin valorization and combustion processes using photoionization techniques and provide advanced mechanistic and kinetics insights to aid the bottom-up optimization of such processes.


Assuntos
Lignina , Cicloexenos , Etilenos , Cetonas , Cinética , Espectroscopia Fotoeletrônica
12.
Phys Chem Chem Phys ; 24(36): 21786-21793, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36082786

RESUMO

The development of lignin valorization processes such as catalytic fast pyrolysis (CFP) to produce fine chemicals and fuels leads to a more sustainable future. The implementation of CFP is enabled by understanding the chemistry of lignin constituents, which, however, requires thorough mechanistic investigations by detecting reactive species. In this contribution, we investigate the CFP of the three methoxyphenol (MP) isomers over H-ZSM-5 utilizing vacuum ultraviolet synchrotron radiation and operando photoelectron photoion coincidence (PEPICO) spectroscopy. All isomers demethylate at first to yield benzenediols, from which dehydroxylation reactions proceed to produce phenol and benzene. Additional pathways to form benzene proceed over cyclopentadiene, methylcyclopentadiene, and fulvene intermediates. The detection of trace amounts of methanol in the product stream suggests a demethoxylation reaction to yield phenol. Guaiacol (2- or ortho-MP) exhibits slightly higher reactivity compared to 3-MP and 4-MP, due to the formation of the fulvenone ketene, which opens additional routes to benzene and phenol. When compared to benzenediol catalytic pyrolysis, the additional methyl group in MP leads to high conversion at lower reactor temperatures, which is mostly owed to the lower H3C-O vs. H-O bond energy and the possibility to demethoxylate to produce phenol.


Assuntos
Lignina , Pirólise , Benzeno/química , Ciclopentanos , Guaiacol , Lignina/química , Metanol , Fenol , Fenóis
13.
Phys Chem Chem Phys ; 24(3): 1869-1876, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989380

RESUMO

Ortho-benzyne is a potentially important precursor for polycyclic aromatic hydrocarbon formation, but much is still unknown about its chemistry. In this work, we report on a combined experimental and theoretical study of the o-benzyne + acetylene reaction and employ double imaging threshold photoelectron photoion coincidence spectroscopy to investigate the reaction products with isomer specificity. Based on photoion mass-selected threshold photoelectron spectra, Franck-Condon simulations, and ionization cross section calculations, we conclude that phenylacetylene and benzocyclobutadiene (PA : BCBdiene) are formed at a non-equilibrium ratio of 2 : 1, respectively, in a pyrolysis microreactor at a temperature of 1050 K and a pressure of ∼20 mbar. The C8H6 potential energy surface (PES) is explored to rationalize the formation of the reaction products. Previously unidentified pathways have been found by considering the open-shell singlet (OSS) character of various C8H6 reactive intermediates. Based on the PES data, a kinetic model is constructed to estimate equilibrium abundances of the two products. New insights into the reaction mechanism - with a focus on the OSS intermediates - and the products formed in the o-benzyne + acetylene reaction provide a greater level of understanding of the o-benzyne reactivity during the formation of aromatic hydrocarbons in combustion environments as well as in outflows of carbon-rich stars.

14.
J Phys Chem A ; 126(14): 2211-2221, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35357143

RESUMO

The threshold photoelectron spectra of cinnoline, quinazoline, and quinoxaline, three small naphthalene-analogue polycyclic nitrogen-containing hydrocarbons of C8H6N2 composition, were recorded. The spectra are assigned to understand their electronic structure and the role of isomerism. Furthermore, this work provides reference data for the selective identification of such species as gas-phase reaction products at low number densities. Imaging photoelectron photoion coincidence spectroscopy was used at the VUV beamline of the Swiss Light Source to record the spectra from the ionization onset to 12 eV. To assign and interpret the spectral features, we relied on (time-dependent) density functional theory and EOM-IP-CCSD calculations and computed vertical and adiabatic ionization energies as well as Franck-Condon factors to simulate ground- and excited-state spectra. Vibrational progressions belonging to four electronic states could be simulated in each of the samples, and we report a total of 12 adiabatic ionization energies, including the ones to the ground and excited cation states. Such a wealth of spectral information, as well as the reliable ab initio modeling, is promising with regards to analytical applications. While cinnoline can be easily distinguished by its lowest adiabatic ionization energy, quinazoline and quinoxaline show different vibrational fingerprints, which can be used to distinguish the three isomers even in complex reaction mixtures. Finally, we also relate the cation electronic states to the neutral molecular orbitals and note that Koopmans' approximation fails in these N2-containing species very much like it does in N2.

15.
J Phys Chem A ; 126(14): 2196-2210, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35316066

RESUMO

Resistively heated silicon carbide microreactors are widely applied as continuous sources to selectively prepare elusive and reactive intermediates with astrochemical, catalytic, or combustion relevance to measure their photoelectron spectrum. These reactors also provide deep mechanistic insights into uni- and bimolecular chemistry. However, the sampling conditions and effects have not been fully characterized. We use cation velocity map imaging to measure the velocity distribution of the molecular beam signal and to quantify the scattered, rethermalized background sample. Although translational cooling is efficient in the adiabatic expansion from the reactor, the breakdown diagrams of methane and chlorobenzene confirm that the molecular beam component exhibits a rovibrational temperature comparable with that of the reactor. Thus, rovibrational cooling is practically absent in the expansion from the microreactor. The high rovibrational temperature also affects the threshold photoelectron spectrum of both benzene and the allyl radical in the molecular beam, but to different degrees. While the extreme broadening of the benzene TPES suggests a complex ionization mechanism, the allyl TPES is in fact consistent with an internal temperature close to that of the reactor. The background, room-temperature spectra of both are superbly reproduced by Franck-Condon simulations at 300 K. On the one hand, this leads us to suggest that room-temperature reference spectra should be used in species identification. On the other hand, analysis of the allyl iodide pyrolysis data shows that iodine atoms often recombine to form molecular iodine on the chamber surfaces. Such sampling effects may distort the chemical composition of the scattered background with respect to the molecular beam signal emanating directly from the reactor. This must be considered in quantitative analyses and kinetic modeling.

16.
J Phys Chem A ; 126(48): 9022-9030, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36441585

RESUMO

The high-resolution photoion mass-selected threshold photoelectron spectrum (ms-TPES) of the phenoxy radical (C6H5O•), produced by pyrolysis of anisole, was investigated at the VUV beamline of the Swiss Light Source. Adiabatic ionization energies have been determined to be 8.56, 9.42, 9.76, and 9.94 eV to the X̃+1A1, ã+3A2, Ã+1A2, and b̃+3B2 cation states, respectively, supported by DFT, WFT, and composite-method calculations. A ring deformation mode was found to be active upon ionization by Franck-Condon analysis and responsible for the vibrational structure of the TPES in all four ion states. While the X̃+1A1 and ã+3A2 states' assignment agrees with the literature, we revise the energetic order of the Ã+1A2 and b̃+3B2 cation states in the ms-TPES, based on a pronounced lifetime broadening of the excited triplet state. This is rationalized by strong coupling between the triplet states as confirmed by EOM-EE-CCSD calculations indicating a conical intersection with a low-lying seam to the ã+3A2 state. Our study provides a well-resolved spectrum, to be used for the isomer-selective assignment of reactive species in combustion and catalysis and also serves as benchmark to evaluate theoretical methods to address closed- and open-shell singlet and triplet cation intermediates.

17.
Angew Chem Int Ed Engl ; 61(41): e202207777, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929758

RESUMO

Ketene (CH2 =C=O) has been postulated as a key intermediate for the first olefin production in the zeolite-catalyzed chemistry of methanol-to-olefins (MTO) and syngas-to-olefins (STO) processes. The reaction mechanism remains elusive, because the short-lived ethenone ketene and its derivatives are difficult to detect, which is further complicated by the low expected ketene concentration. We report on the experimental detection of methylketene (CH3 -CH=C=O) formed by the methylation of ketene on HZSM-5 via operando synchrotron photoelectron photoion coincidence (PEPICO) spectroscopy. Ketene is produced in situ from methyl acetate. The observation of methylketene as the ethylene precursor evidences a computationally predicted ketene-to-ethylene route proceeding via a methylketene intermediate followed by decarbonylation.

18.
Phys Chem Chem Phys ; 23(2): 1265-1272, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33355548

RESUMO

Methane was doped with nitric oxide and oxidized in a high-pressure flow reactor. The nitrogen chemistry during partial oxidation was studied using photoelectron photoion coincidence spectroscopy with vacuum ultraviolet synchrotron radiation. The adiabatic ionization energy of nitrous acid, HONO, has been determined as 10.95 ± 0.03 eV. The HONO breakdown diagram was plotted based solely on the measured parent signal and the computed Franck-Condon envelope of trans-HONO, confirming the trans-HONO dissociative photoionization threshold to NO+ + ˙OH at 11.34 eV. The spectra show strong indication for the presence of cis-HONO. We expected the m/z 47 photoion mass selected threshold photoelectron signal to rebound near 12 eV, i.e., at the ionization energy of nitryl hydride, the third HNO2 isomer. Recent computational studies suggest nitryl hydride is formed at a rate similar to trans-HONO, is more thermally stable than nitrous acid, its cation is bound, and its photoelectron spectrum is predicted to exhibit a strong origin band near 12 eV. The absence of its mass selected threshold photoelectron signal shows that nitryl hydride is either not formed in measurable amounts or is consumed faster than nitrous acid, for instance by isomerization to trans-HONO.

19.
Phys Chem Chem Phys ; 23(28): 15059-15075, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34231583

RESUMO

Although aluminium acetylacetonate, Al(C5H7O2)3, is a common precursor for chemical vapor deposition (CVD) of aluminium oxide, its gas-phase decomposition is not well-known. Here, we studied its thermal decomposition in a microreactor by double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO) between 325 and 1273 K. The reactor flow field was characterized by CFD. Quantum chemical calculations were used for the assignment of certain species. The dissociative ionization of the room temperature precursor molecule starts at a photon energy of 8.5 eV by the rupture of the bond to an acetylacetonate ligand leading to the formation of the Al(C5H7O2)2+ ion. In pyrolysis experiments, up to 49 species were detected and identified in the gas-phase, including reactive intermediates and isomeric/isobaric hydrocarbons, oxygenated species as well as aluminium containing molecules. We detected aluminium bis(diketo)acetylacetonate-H, Al(C5H7O2)C5H6O2, at m/z 224 together with acetylacetone (C5H8O2) as the major initial products formed at temperatures above 600 K. A second decomposition channel affords Al(OH)2(C5H7O2) along with the formation of a substituted pentalene ring species (C10H12O2) as assigned by Franck-Condon simulations and quantum chemical calculations. Acetylallene (C5H6O), acetone (C3H6O) and ketene (C2H2O) were major secondary decomposition products, formed upon decomposition of the primary products. Three gas-phase aromatic hydrocarbons were also detected and partially assigned for the first time: m/z 210, m/z 186 (C14H18 or C12H10O2) and m/z 146 (C11H14 or C9H6O2) and their formation mechanism is discussed. Finally, Arrhenius parameters are presented on the gas-phase decomposition kinetics of Al(C5H7O2)3, aided by numerical simulation of the flow field.

20.
J Phys Chem A ; 125(2): 646-656, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33426884

RESUMO

Double-imaging photoelectron photoion coincidence spectroscopy (i2PEPICO) with tunable synchrotron vacuum ultraviolet radiation was used to record threshold ionization mass spectra of the halocyclohexanes C6H11X (X = Cl, Br, and I). Calculations show that experimental dissociative ionization thresholds correspond to thermochemical limits. Among the processes observed (X loss, followed by C2H4 or C3H6 loss; C2H3Cl loss; HCl loss, followed by CH3 or C2H4 loss), halogen atom loss can be used to derive enthalpies of formation and C-X bond energies in the cation. As an ancillary value, we propose a new proton affinity for cyclohexene at PA298K(c-C6H10) = 771.5 ± 1.7 kJ mol-1. The halogen loss onsets 10.74 ± 0.06 eV, 10.125 ± 0.005, and 9.474 ± 0.005 eV thus yield ΔfHo298K(C6H11X (g)) = -164.4 ± 6.2, -114.4 ± 2.3, and -56.3 ± 2.3 kJ mol-1 for X = Cl, Br, and I, respectively. The last two agree with DFT-calculated isodesmic reaction energies very well, as opposed to G4 theory for X = Br. The C-X bond energy in the cation is the lowest for X = Br. This is the sum result of the weakening C-X bond in the neutral and the increasing stabilization of the parent ion with increasing halogen size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA