Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med ; 16(1): 69, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29764482

RESUMO

BACKGROUND: Previous studies on high-risk opioid use have only focused on patients diagnosed with an opioid disorder. This study evaluates the impact of various high-risk prescription opioid use groups on healthcare costs and utilization. METHODS: This is a retrospective cohort study using QuintilesIMS health plan claims with independent variables from 2012 and outcomes from 2013. We included a population-based sample of 191,405 non-elderly adults with known sex, one or more opioid prescriptions, and continuous enrollment in 2012 and 2013. Three high-risk opioid use groups were identified in 2012 as (1) persons with 100+ morphine milligram equivalents per day for 90+ consecutive days (chronic users); (2) persons with 30+ days of concomitant opioid and benzodiazepine use (concomitant users); and (3) individuals diagnosed with an opioid use disorder. The length of time that a person had been characterized as a high-risk user was measured. Three healthcare costs (total, medical, and pharmacy costs) and four binary utilization indicators (the top 5% total cost users, the top 5% pharmacy cost users, any hospitalization, and any emergency department visit) derived from 2013 were outcomes. We applied a generalized linear model (GLM) with a log-link function and gamma distribution for costs while logistic regression was employed for utilization indicators. We also adopted propensity score weighting to control for the baseline differences between high-risk and non-high-risk opioid users. RESULTS: Of individuals with one or more opioid prescription, 1.45% were chronic users, 4.81% were concomitant users, and 0.94% were diagnosed as having an opioid use disorder. After adjustment and propensity score weighting, chronic users had statistically significant higher prospective total (40%), medical (3%), and pharmacy (172%) costs. The increases in total, medical, and pharmacy costs associated with concomitant users were 13%, 7%, and 41%, and 28%, 21% and 63% for users with a diagnosed opioid use disorder. Both total and pharmacy costs increased with the length of time characterized as high-risk users, with the increase being statistically significant. Only concomitant users were associated with a higher odds of hospitalization or emergency department use. CONCLUSIONS: Individuals with high-risk prescription opioid use have significantly higher healthcare costs and utilization than their counterparts, especially those with chronic high-dose opioid use.


Assuntos
Analgésicos Opioides/economia , Custos de Cuidados de Saúde/tendências , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
PLoS One ; 14(3): e0213258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840682

RESUMO

BACKGROUND: Payers and providers still primarily use ordinary least squares (OLS) to estimate expected economic and clinical outcomes for risk adjustment purposes. Penalized linear regression represents a practical and incremental step forward that provides transparency and interpretability within the familiar regression framework. This study conducted an in-depth comparison of prediction performance of standard and penalized linear regression in predicting future health care costs in older adults. METHODS AND FINDINGS: This retrospective cohort study included 81,106 Medicare Advantage patients with 5 years of continuous medical and pharmacy insurance from 2009 to 2013. Total health care costs in 2013 were predicted with comorbidity indicators from 2009 to 2012. Using 2012 predictors only, OLS performed poorly (e.g., R2 = 16.3%) compared to penalized linear regression models (R2 ranging from 16.8 to 16.9%); using 2009-2012 predictors, the gap in prediction performance increased (R2:15.0% versus 18.0-18.2%). OLS with a reduced set of predictors selected by lasso showed improved performance (R2 = 16.6% with 2012 predictors, 17.4% with 2009-2012 predictors) relative to OLS without variable selection but still lagged behind the prediction performance of penalized regression. Lasso regression consistently generated prediction ratios closer to 1 across different levels of predicted risk compared to other models. CONCLUSIONS: This study demonstrated the advantages of using transparent and easy-to-interpret penalized linear regression for predicting future health care costs in older adults relative to standard linear regression. Penalized regression showed better performance than OLS in predicting health care costs. Applying penalized regression to longitudinal data increased prediction accuracy. Lasso regression in particular showed superior prediction ratios across low and high levels of predicted risk. Health care insurers, providers and policy makers may benefit from adopting penalized regression such as lasso regression for cost prediction to improve risk adjustment and population health management and thus better address the underlying needs and risk of the populations they serve.


Assuntos
Custos de Cuidados de Saúde/estatística & dados numéricos , Modelos Lineares , Aprendizado de Máquina/estatística & dados numéricos , Risco Ajustado/métodos , Adulto , Idoso , Comorbidade , Feminino , Humanos , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA