Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(9): e23633, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690712

RESUMO

Recent reports suggest that the Hippo signaling pathway regulates testis development, though its exact roles in Sertoli cell differentiation remain unknown. Here, we examined the functions of the main Hippo pathway kinases, large tumor suppressor homolog kinases 1 and 2 (Lats1 and Lats2) in developing mouse Sertoli cells. Conditional inactivation of Lats1/2 in Sertoli cells resulted in the disorganization and overgrowth of the testis cords, the induction of a testicular inflammatory response and germ cell apoptosis. Stimulated by retinoic acid 8 (STRA8) expression in germ cells additionally suggested that germ cells may have been preparing to enter meiosis prior to their loss. Gene expression analyses of the developing testes of conditional knockout animals further suggested impaired Sertoli cell differentiation, epithelial-to-mesenchymal transition, and the induction of a specific set of genes associated with Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated integrin signaling. Finally, the involvement of YAP/TAZ in Sertoli cell differentiation was confirmed by concomitantly inactivating Yap/Taz in Lats1/2 conditional knockout model, which resulted in a partial rescue of the testicular phenotypic changes. Taken together, these results identify Hippo signaling as a crucial pathway for Sertoli cell development and provide novel insight into Sertoli cell fate maintenance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Proteínas Serina-Treonina Quinases , Células de Sertoli , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Células de Sertoli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Diferenciação Celular/fisiologia , Camundongos Knockout , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Testículo/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/genética
2.
Biol Reprod ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943353

RESUMO

Previous in vitro studies have suggested that SLIT ligands could play roles in regulating ovarian granulosa cell proliferation and gene expression, as well as luteolysis. However, no in vivo study of Slit gene function has been conducted to date. Here we investigated the potential role of Slit1 in ovarian biology using a Slit1-null mouse model. Female Slit1-null mice were found to produce larger litters than their wild-type counterparts due to increased ovulation rates. Increased ovarian weights in Slit1-null animals were found to be due to the presence of greater numbers of healthy antral follicles with similar numbers of atretic ones, suggesting both an increased rate of follicle recruitment and a decreased rate of atresia. Consistent with this, treatment of cultured granulosa cells with exogenous SLIT1 induced apoptosis in presence or absence of FSH, but had no effect on cell proliferation. Although few alterations in the mRNA levels of FSH-responsive genes were noted in granulosa cells of Slit1-null mice, LH target gene mRNA levels were greatly increased. Finally, increased phospho-AKT levels were found in granulosa cells isolated from Slit1-null mice, and SLIT1 pretreatment of cultured granulosa cells inhibited the ability of both FSH and LH to increase AKT phosphorylation, suggesting a mechanism whereby SLIT1 could antagonize gonadotropin signaling. These findings therefore represent the first evidence for a physiological role of a SLIT ligand in the ovary, and define Slit1 as a novel autocrine/paracrine regulator of follicle development.

3.
Reproduction ; 165(6): 605-616, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053038

RESUMO

In brief: The regulation of AKT in the endometrium during many cellular processes such as apoptosis and cell survival is crucial during the estrous cycle to ensure fertility. This research shows the specific function of AKT isoforms in the mouse endometrium for litter size, estrous cyclicity and endometrial gland development. Abstract: Apoptosis and cell survival regulation are crucial processes during the estrous cycle to prepare a receptive uterus during implantation for successful recognition of pregnancy. PI3K/AKT signaling has a crucial role during gestation, and AKT isoforms (1, 2 or 3) are regulated differently in the endometrium during the estrous cycle and embryo implantation. However, the specific roles of these isoforms are still unclear. We have previously shown that AKT isoforms expression during the rat estrous cycle and gestation is differently regulated. The present study aimed to establish the specific role of AKT isoforms in the mouse uterus. The hypothesis is that dysregulation of AKT isoforms expression could cause fertility-related issues in an isoform-specific manner. With four different mouse models and in-house crossbreeding, all isoforms KO combinations (single, double and triple) were obtained in progesterone receptor-expressing tissues. The results demonstrated that in absence of one or more AKT isoforms, female fertility was decreased. Mainly, we have observed smaller litter size, specifically in Akt1-2 KO mice. Additionally, we have found Akt1-2-3 KO mice to be fully infertile. Estrous cyclicity was also disrupted in Akt1-2 KO mice with longer diestrus stage. Moreover, the number of endometrial glands was decreased throughout the estrous cycle suggesting an important role in gland development for AKT1 and AKT2. Our results suggest not only specific roles between each isoform but also a partially redundant function of AKT1 and AKT2 in litter size, estrous cyclicity and endometrial gland development. This highlights the importance of AKT in the physiological regulation of mouse fertility.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Camundongos , Gravidez , Ratos , Ciclo Estral , Fertilidade , Periodicidade , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Development ; 146(20)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31575647

RESUMO

WNT signaling plays essential roles in the development and function of the female reproductive tract. Although crosstalk with the Hippo pathway is a key regulator of WNT signaling, whether Hippo itself plays a role in female reproductive biology remains largely unknown. Here, we show that conditional deletion of the key Hippo kinases Lats1 and Lats2 in mouse Müllerian duct mesenchyme cells caused them to adopt the myofibroblast cell fate, resulting in profound reproductive tract developmental defects and sterility. Myofibroblast differentiation was attributed to increased YAP and TAZ expression (but not to altered WNT signaling), leading to the direct transcriptional upregulation of Ctgf and the activation of the myofibroblast genetic program. Müllerian duct mesenchyme cells also became myofibroblasts in male mutant embryos, which impeded the development of the male reproductive tract and resulted in cryptorchidism. The inactivation of Lats1/2 in differentiated uterine stromal cells in vitro did not compromise their ability to decidualize, suggesting that Hippo is dispensable during implantation. We conclude that Hippo signaling is required to suppress the myofibroblast genetic program and maintain multipotency in Müllerian mesenchyme cells.


Assuntos
Ductos Paramesonéfricos/citologia , Ductos Paramesonéfricos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Imunoprecipitação da Cromatina , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Endométrio/citologia , Endométrio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Cell Commun Signal ; 20(1): 72, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619099

RESUMO

BACKGROUND: The LH surge is a pivotal event that triggers multiple key ovarian processes including oocyte maturation, cumulus expansion, follicular wall rupture and luteinization of mural granulosa and theca cells. Recently, LH-dependent activation of the Hippo signaling pathway has been shown to be required for the differentiation of granulosa cells into luteal cells. Still, the precise interactions between Hippo and LH signaling in murine granulosa cells remain to be elucidated. METHODS: To detect the expression of effectors of the Hippo pathway, western blot, immunohistochemical and RT-qPCR analyses were performed on granulosa cells treated with LH in vitro or isolated from immature mice treated with eCG and hCG. Cultured granulosa cells were pretreated with pharmacologic inhibitors to identify the signaling pathways involved in Hippo regulation by LH. To study the roles of Yap1 and Taz in the regulation of the LH signaling cascade, RT-qPCR and microarray analyses were done on granulosa cells from Yap1f/f;Tazf/f mice treated with an adenovirus to drive cre expression. RT-qPCR was performed to evaluate YAP1 binding to the Areg promoter following chromatin immunoprecipitation of granulosa cells collected from mice prior to or 60 min following hCG treatment. RESULTS: Granulosa cells showed a transient increase in LATS1, YAP1 and TAZ phosphorylation levels in response to the ovulatory signal. This Hippo activation by LH was mediated by protein kinase A. Furthermore, Yap1 and Taz are required for the induction of several LH target genes such as Areg, Pgr and Ptgs2, and for the activation of the ERK1/2 pathway. Consistent with these results, there was a substantial overlap between genes that are upregulated by LH and those that are downregulated following loss of Yap1/Taz, highlighting a major role for Hippo in mediating LH actions in the ovulation process. Finally, we showed that there is a marked recruitment of YAP1 to the Areg promoter of granulosa cells in response to hCG stimulation. CONCLUSIONS: Overall, these results indicate that Hippo collaborates with the cAMP/PKA and ERK1/2 pathways to participate in the precise regulation of the LH cascade, and that Areg, as a direct transcriptional target of YAP1, is involved in mediating its actions in the ovary. Video Abstract.


Assuntos
Células da Granulosa , Hormônio Luteinizante , Anfirregulina/metabolismo , Animais , Feminino , Células da Granulosa/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Camundongos , Fosforilação , Transdução de Sinais
6.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362374

RESUMO

Hippo signaling plays an essential role in the development of numerous tissues. Although it was previously shown that the transcriptional effectors of Hippo signaling Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) can fine-tune the regulation of sex differentiation genes in the testes, the role of Hippo signaling in testis development remains largely unknown. To further explore the role of Hippo signaling in the testes, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 (Lats1 and Lats2, two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in the somatic cells of the testes using an Nr5a1-cre strain (Lats1flox/flox;Lats2flox/flox;Nr5a1-cre). We report here that early stages of testis somatic cell differentiation were not affected in this model but progressive testis cord dysgenesis was observed starting at gestational day e14.5. Testis cord dysgenesis was further associated with the loss of polarity of the Sertoli cells and the loss of SOX9 expression but not WT1. In parallel with testis cord dysgenesis, a loss of steroidogenic gene expression associated with the appearance of myofibroblast-like cells in the interstitial space was also observed in mutant animals. Furthermore, the loss of YAP phosphorylation, the accumulation of nuclear TAZ (and YAP) in both the Sertoli and interstitial cell populations, and an increase in their transcriptional co-regulatory activity in the testes suggest that the observed phenotype could be attributed at least in part to YAP and TAZ. Taken together, our results suggest that Hippo signaling is required to maintain proper differentiation of testis somatic cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Sexual , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Testículo/metabolismo , Proteínas de Sinalização YAP
7.
Cell Commun Signal ; 19(1): 8, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478524

RESUMO

BACKGROUND: First identified as a regulator of neuronal axon guidance, Slit/Robo signaling has since been implicated in additional physiologic and pathologic processes, such as angiogenesis, organogenesis and cancer progression. However, its roles in the regulation of testis function have been little explored. METHODS: Immunohistochemistry and RT-qPCR analyses were performed to detect the expression of Slit/Robo signaling effectors in the adult mouse testis. To identify the roles and mechanisms of Slit/Robo signaling in the regulation of steroidogenesis, RT-qPCR, immunoblotting and hormone measurements were carried out using Leydig cells (primary cultures and the MA10 cell line) treated with exogenous SLIT ligands, and testes from Robo1-null mice. RESULTS: Slit1, -2 and -3 and Robo1 and -2 expression was detected in the adult mouse testis, particularly in Leydig cells. In vitro treatment of Leydig cells with exogenous SLIT ligands led to a decrease in the expression of the steroidogenic genes Star, Cyp11a1, and Cyp17a1. SLIT2 treatment decreased the phosphorylation of the key steroidogenic gene regulator CREB, possibly in part by suppressing AKT activity. Furthermore, SLIT2 treatment reduced the responsiveness of MA10 cells to luteinizing hormone by decreasing the expression of Lhcgr. Consistent with these in vitro results, an increase in testicular Star mRNA levels and intra-testicular testosterone concentrations were found in Robo1-null mice. Finally, we showed that the expression of the Slit and Robo genes in Leydig cells is enhanced by testosterone treatment in vitro, by an AR-independent mechanism. CONCLUSION: Taken together, these results suggest that Slit/Robo signaling represents a novel mechanism that regulates Leydig cell steroidogenesis. It may act in an autocrine/paracrine manner to mediate negative feedback by testosterone on its own synthesis. Video Abstract.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Intersticiais do Testículo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Testosterona/biossíntese , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Hormônio Luteinizante/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Progesterona/biossíntese , Receptores Imunológicos/genética , Receptores do LH/genética , Transdução de Sinais
8.
Reproduction ; 160(2): 307-318, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520726

RESUMO

The development of the Müllerian ducts into the female reproductive tract requires the coordination of multiple signaling pathways that regulate proliferation, apoptosis and differentiation. The Hippo pathway has been reported to interact with several pathways with established roles in Müllerian duct development; yet, its potential roles in reproductive tract development and function remain mostly uncharacterized. The objective of this study was therefore to characterize the roles of the Hippo transcriptional coactivators YAP and TAZ in the female reproductive tract using transgenic mouse models. This report shows that the concomitant conditional inactivation of Yap and Taz in the mouse Müllerian duct mesenchyme results in postnatal developmental defects of the oviduct. Most notably, discontinuities in the myosalpinx layer lead to the progressive formation of cystic dilations of the isthmus. These defects prevented embryo transport and subsequent implantation in older animals, causing infertility. The loss of YAP/TAZ did not appear to affect other biological processes known to be required for the maintenance of oviductal wall integrity, such as TGF-ß/SMAD and Notch signaling and the biogenesis of miRNA, suggesting that the Hippo pathway acts independently of these processes to direct oviduct development. Taken together, these results suggest redundant and essential roles for YAP and TAZ in the postnatal development of the oviduct and the maintenance of its structural integrity.


Assuntos
Aciltransferases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Oócitos/citologia , Oviductos/citologia , Animais , Animais Recém-Nascidos , Apoptose , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/fisiologia , Oviductos/fisiologia , Proteínas de Sinalização YAP
9.
FASEB J ; 33(10): 10819-10832, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268774

RESUMO

Recent reports suggest that the Hippo signaling pathway influences ovarian follicle development; however, its exact roles remain unknown. Here, we examined the ovarian functions of the Hippo kinases large tumor suppressors (LATS)1 and 2, which serve to inactivate the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Inactivation of Lats1/2 in murine granulosa cells either in vitro or in vivo resulted in a loss of granulosa cell morphology, function, and gene expression. Mutant cells further underwent changes in structure and gene expression suggestive of epithelial-to-mesenchymal transition and transdifferentiation into multiple lineages. In vivo, granulosa cell-specific loss of Lats1/2 caused the ovarian parenchyma to be mostly replaced by bone tissue and seminiferous tubule-like structures. Transdifferentiation into Sertoli-like cells and osteoblasts was attributed in part to the increased recruitment of YAP and TAZ to the promoters of sex-determining region Y box 9 and bone γ-carboxyglutamate protein, key mediators of male sex determination and osteogenesis, respectively. Together, these results demonstrate for the first time a critical role for Lats1/2 in the maintenance of the granulosa cell genetic program and further highlight the remarkable plasticity of granulosa cells.-Tsoi, M., Morin, M., Rico, C., Johnson, R. L., Paquet, M., Gévry, N., Boerboom, D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance.


Assuntos
Células da Granulosa/citologia , Células da Granulosa/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Transdiferenciação Celular , Transição Epitelial-Mesenquimal , Feminino , Regulação da Expressão Gênica , Via de Sinalização Hippo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Infertilidade Feminina/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Folículo Ovariano/fisiologia , Ovário/patologia , Ovário/fisiopatologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
10.
Genesis ; 57(10): e23330, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31386299

RESUMO

Yes-associated protein (YAP), a key effector of the Hippo signaling pathway, is expressed in the nucleus of spermatogonia in mice, suggesting a potential role in spermatogenesis. Here, we report the generation of a conditional knockout mouse model (Yapflox/flox ; Ddx4cre/+ ) that specifically inactivates Yap in the germ cells. The inactivation of Yap in spermatogonia was found to be highly efficient in this model. The loss of Yap in the germ cells had no observable effect on spermatogenesis in vivo. Histological examination of the testes showed no structural differences between mutant animals and age-matched Yapflox/flox controls, nor was any differences detected in gonadosomatic index, expression of germ cell markers or sperm counts. Cluster-forming assay using undifferentiated spermatogonia, including spermatogonial stem cells (SSCs), also showed that YAP is dispensable for SSC cluster formation in vitro. However, an increase in the expression of spermatogenesis and oogenesis basic helix-loop-helix 1 (Sohlh1) and neurogenin 3 (Ngn3) was observed in clusters derived from Yapflox/flox ; Ddx4cre/+ animals. Taken together, these results suggest that YAP fine-tunes the expression of genes associated with spermatogonial fate commitment, but that its loss is not sufficient to alter spermatogenesis in vivo.


Assuntos
Proteínas Proto-Oncogênicas c-yes/fisiologia , Espermatogênese/fisiologia , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-yes/genética , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/fisiologia
11.
Biol Reprod ; 100(1): 49-60, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010727

RESUMO

Wnt4 and Wnt5a have well-established roles in the embryonic development of the female reproductive tract, as well as in implantation, decidualization, and ovarian function in adult mice. Although these roles appear to overlap, whether Wnt5a and Wnt4 are functionally redundant in these tissues has not been determined. We addressed this by concomitantly inactivating Wnt4 and Wnt5a in the Müllerian mesenchyme and in ovarian granulosa cells by crossing mice bearing floxed alleles to the Amhr2cre strain. Whereas fertility was reduced by ∼50% in Wnt4flox/flox; Amhr2cre/+ and Wnt5aflox/flox; Amhr2cre/+ females, Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice were either nearly or completely sterile. Loss of fertility was not due to an ovarian defect, as serum ovarian hormone levels, follicle counts, and ovulation rates were comparable to controls. Conversely, the uterus was abnormal in Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice, with thin myometrial and stromal layers, frequent fibrosis and a >90% reduction in numbers of uterine glands, suggesting redundant or additive roles of Wnt4 and Wnt5a in uterine adenogenesis. Loss of fertility in Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice was attributed to defects in decidualization, implantation, and placental development, the severity of which were proportional to the extent of gland loss. Furthermore, a third of Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ females had a partial agenesis of Müllerian duct-derived structures, but with normal oviducts and ovaries. Together, our results suggest that Wnt4 and Wnt5a play redundant roles in the development of the female reproductive tract, and may provide insight into the etiology of certain cases of Müllerian agenesis in women.


Assuntos
Ductos Paramesonéfricos/anormalidades , Ductos Paramesonéfricos/metabolismo , Anormalidades Urogenitais/genética , Útero/anormalidades , Proteína Wnt-5a/genética , Proteína Wnt4/genética , Animais , Feminino , Deleção de Genes , Infertilidade Feminina/embriologia , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Masculino , Mesoderma/anormalidades , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Transgênicos , Ductos Paramesonéfricos/patologia , Miométrio/anormalidades , Miométrio/metabolismo , Gravidez , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Útero/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt4/metabolismo
12.
J Mammary Gland Biol Neoplasia ; 22(3): 203-214, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28822004

RESUMO

Canine mammary tumors (CMTs) are the most common neoplasms in intact female dogs. Some clinical and molecular similarities between certain CMT subtypes and breast cancer make them a potential model for the study of the human disease. As misregulated Hippo signaling is thought to play an important role in breast cancer development and also occurs in CMTs, we sought to determine if Hippo represents a valid pharmacological target for the treatment of CMTs. Six CMT cell lines were assessed for their expression of the Hippo pathway effectors YAP and TAZ and for their sensitivity to verteporfin, an inhibitor of YAP-mediated transcriptional coactivation. Four cell lines that expressed YAP (CMT-9, -12, -28, -47) were found to be very sensitive to verteporfin treatment, which killed the cells through induction of apoptosis with ED50 values of 14-79 nM. Conversely, two YAP-negative cell lines (CF-35, CMT-25) were an order of magnitude more resistant to verteporfin. Verteporfin suppressed the expression of YAP/TAZ target genes, particularly CYR61 and CTGF, which play important roles in breast cancer development. Verteporfin was also able to inhibit cell migration and anchorage-independent growth. Likewise, verteporfin efficiently suppressed tumor cell invasiveness in the CMT-28 and -47 lines, but not in CF-35 cells. Together, our findings provide proof of principle that pharmacological targeting of the Hippo pathway compromises the viability and attenuates the malignant behavior of CMT cells. These results will serve as the basis for the development of novel chemotherapeutic approaches for CMTs that could translate to human medicine.


Assuntos
Neoplasias Mamárias Animais/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cães , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Mamárias Animais/tratamento farmacológico , Invasividade Neoplásica/genética , Porfirinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Verteporfina
13.
Biol Reprod ; 97(1): 162-175, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637242

RESUMO

Yes-associated protein (YAP) and WW-containing transcription regulator 1 (WWTR1) are two functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway, and that act as major regulators of cell growth and differentiation. To elucidate their role in Sertoli cells, primary Sertoli cell culture from Yapflox/flox; Wwtr1flox/flox animals were infected with a Cre recombinase-expressing adenovirus. Concomitant inactivation of Yap and Wwtr1 resulted in a decrease in the mRNA levels of the male sex differentiation genes Dhh, Dmrt1, Sox9, and Wt1, whereas those of genes involved in female differentiation (Wnt4, Rspo1, and Foxl2) were induced. SOX9, FOXL2, and WNT4 proteins were regulated in the same manner as their mRNAs in response to loss of YAP and WWTR1. To further characterize the role of YAP and WWTR1 in Sertoli cells, we generated a mouse model (Yapflox/flox; Wwtr1flox/flox; Amhcre/+) in which Yap and Wwtr1 were conditionally deleted in Sertoli cells. An increase in the number of apoptotic cells was observed in the seminiferous tubules of 4 dpp mutant mice, leading to a reduction in testis weights and a decrease in the number of Sertoli cells in adult animals. Gene expression analyses of testes from 4 dpp Yapflox/flox; Wwtr1flox/flox; Amhcre/+ mice showed that Sertoli cell differentiation is initially altered, as Dhh, Dmrt1, and Sox9 mRNA levels were downregulated, whereas Wnt4 mRNA levels were increased. However, expression of these genes was not changed in older animals. Together, these results suggest a novel role of the Hippo signaling pathway in the mechanisms of sex differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica/fisiologia , Fosfoproteínas/metabolismo , Células de Sertoli/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Transtornos do Desenvolvimento Sexual , Feminino , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Contagem de Espermatozoides , Transativadores , Proteínas de Sinalização YAP , beta Catenina/genética , beta Catenina/metabolismo
14.
FASEB J ; 30(4): 1534-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26667040

RESUMO

Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation ofWnt5a(but notWnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation. Microarray analyses have revealed that WNT5a acts to down-regulate the expression of FSH-responsive genesin vitro, and corresponding increases in the expression of these genes have been found in the GCs of conditional knockout mice. Unexpectedly, we found that WNT5a regulates its target genes not by signalingviathe WNT/Ca(2+)or planar cell polarity pathways, but rather by inhibiting the canonical pathway, causing both ß-catenin (CTNNB1) and cAMP responsive element binding (CREB) protein levels to decreaseviaa glycogen synthase kinase-3ß-dependent mechanism. We further found that WNT5a prevents follicle-stimulating hormone and luteinizing protein from up-regulating the CTNNB1 and CREB proteins and their target genes, indicating that WNT5a functions as a physiologic inhibitor of gonadotropin signaling. Together, these findings identify WNT5a as a key regulator of follicle development and gonadotropin responsiveness.-Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling.


Assuntos
Gonadotropinas/farmacologia , Células da Granulosa/efeitos dos fármacos , Folículo Ovariano/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Células da Granulosa/metabolismo , Immunoblotting , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Ovulação/efeitos dos fármacos , Ovulação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt-5a
15.
Biol Reprod ; 95(1): 13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281705

RESUMO

The mammalian target of rapamycin (Mtor) gene encodes a serine/threonine kinase that acts as a master regulator of processes as diverse as cell growth, protein synthesis, cytoskeleton reorganization, and cell survival. In the testis, physiological roles for Mtor have been proposed in perinatal Sertoli cell proliferation and blood-testis barrier (BTB) remodeling during spermatogenesis, but no in vivo studies of Mtor function have been reported. Here, we used a conditional knockout approach to target Mtor in Sertoli cells. The resulting Mtor(flox/flox); Amhr2(cre/+) mice were characterized by progressive, adult-onset testicular atrophy associated with disorganization of the seminiferous epithelium, loss of Sertoli cell polarity, increased germ cell apoptosis, premature release of germ cells, decreased epididymal sperm counts, increased sperm abnormalities, and infertility. Histopathologic analysis and quantification of the expression of stage-specific markers showed a specific loss of pachytene spermatocytes and spermatids. Although the BTB and the ectoplasmic specializations did not appear to be altered in Mtor(flox/flox);Amhr2(cre/+) mice, a dramatic redistribution of gap junction alpha-1 (GJA1) was detected in their Sertoli cells. Phosphorylation of GJA1 at Ser373, which is associated with its internalization, was increased in the testes of Mtor(flox/flox); Amhr2(cre/+) mice, as was the expression and phosphorylation of AKT, which phosphorylates GJA1 at this site. Together, these results indicate that Mtor expression in Sertoli cells is required for the maintenance of spermatogenesis and the progression of germ cell development through the pachytene spermatocyte stage. One mechanism of mTOR action may be to regulate gap junction dynamics by inhibiting AKT, thereby decreasing GJA1 phosphorylation and internalization. mTOR regulates gap junction alpha-1 protein distribution in Sertoli cells and is necessary for progression through the pachytene spermatocyte stage.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Testículo/metabolismo
16.
BMC Cancer ; 15: 479, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26104798

RESUMO

BACKGROUND: Valosin containing protein (VCP) is a critical mediator of protein homeostasis and may represent a valuable therapeutic target for several forms of cancer. Overexpression of VCP occurs in many cancers, and often in a manner correlating with malignancy and poor outcome. Here, we analyzed VCP expression in canine lymphoma and assessed its potential as a therapeutic target for this disease. METHODS: VCP expression in canine lymphomas was evaluated by immunoblotting and immunohistochemistry. The canine lymphoma cell lines CLBL-1, 17-71 and CL-1 were treated with the VCP inhibitor Eeyarestatin 1 (EER-1) at varying concentrations and times and were assessed for viability by trypan blue exclusion, apoptosis by TUNEL and caspase activity assays, and proliferation by propidium iodide incorporation and FACS. The mechanism of EER-1 action was determined by immunoblotting and immunofluorescence analyses of Lys48 ubiquitin and markers of ER stress (DDIT3), autophagy (SQSTM1, MAP1LC3A) and DNA damage (γH2AFX). TRP53/ATM-dependent signaling pathway activity was assessed by immunoblotting for TRP53 and phospho-TRP53 and real-time RT-PCR measurement of Cdkn1a mRNA. RESULTS: VCP expression levels in canine B cell lymphomas were found to increase with grade. EER-1 treatment killed canine lymphoma cells preferentially over control peripheral blood mononuclear cells. EER-1 treatment of CLBL-1 cells was found to both induce apoptosis and cell cycle arrest in G1. Unexpectedly, EER-1 did not appear to act either by inducing ER stress or inhibiting the aggresome-autophagy pathway. Rather, a rapid and dramatic increase in γH2AFX expression was noted, indicating that EER-1 may act by promoting DNA damage accumulation. Increased TRP53 phosphorylation and Cdkn1a mRNA levels indicated an activation of the TRP53/ATM DNA damage response pathway in response to EER-1, likely contributing to the induction of apoptosis and cell cycle arrest. CONCLUSIONS: These results correlate VCP expression with malignancy in canine B cell lymphoma. The selective activity of EER-1 against lymphoma cells suggests that VCP will represent a clinically useful therapeutic target for the treatment of lymphoma. We further suggest a mechanism of EER-1 action centered on the DNA repair response that may be of central importance for the design and characterization of VCP inhibitory compounds for therapeutic use.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Linfoma/genética , Linfoma/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Linfonodos/patologia , Linfoma/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína com Valosina
17.
Biol Reprod ; 90(6): 135, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24855100

RESUMO

Recent evidence has suggested that vascular endothelial growth factor A (VEGFA) is an important regulator of ovarian follicle development and survival. Both LH and FSH regulate Vegfa expression in granulosa cells and signal via the transcription factor hypoxia inducible factor 1 (HIF1). To further study the mechanism of action of HIF1 in the regulation of Vegfa, we studied Vegfa(delta/delta) mice, which lack a hypoxia response element in the Vegfa promoter. Granulosa cells from Vegfa(delta/delta) mice failed to respond to FSH or LH with an increase in Vegfa mRNA expression in vitro, and granulosa cells isolated from eCG-treated immature Vegfa(delta/delta) mice had significantly lower Vegfa mRNA levels compared to controls. However, normal Vegfa mRNA levels were detected in the granulosa cells from immature Vegfa(delta/delta) mice following hCG treatment. Vegfa(delta/delta) females produced infrequent litters, and their pups died shortly after birth. Ovaries from Vegfa(delta/delta) mice were much smaller than controls and contained few antral follicles and corpora lutea. Antral follicles numbers were decreased by nearly 50% in ovaries from Vegfa(delta/delta) mice relative to controls, and 74% of antral follicles in Vegfa(delta/delta) ovaries were atretic. Serum progesterone levels in adult Vegfa(delta/delta) females were significantly lower, apparently reflecting reduced numbers of corpora lutea. This study demonstrates for the first time the requirement of HIF1 for FSH-regulated Vegfa expression in vivo and that HIF1 acts via a single hypoxia response element in the Vegfa promoter to exert its regulatory functions. Our findings also further define the physiological role of VEGFA in follicle development.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Folículo Ovariano/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Corpo Lúteo/fisiologia , Feminino , Gonadotropinas/metabolismo , Células da Granulosa/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão/fisiologia , Folículo Ovariano/citologia , Gravidez , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Reprodução/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética
18.
Vet Comp Oncol ; 21(4): 634-645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709554

RESUMO

The Hippo signalling pathway is involved in breast cancer and canine mammary tumour (CMT). This study sought to evaluate the efficacy of fluvastatin on the Hippo pathway and its main effectors, YAP and TAZ, in vivo in a murine CMT cell line xenograft model. On treatment day 1, mice were divided into four groups: vehicle, fluvastatin, doxorubicin or a combination therapy. Tumour volumes were monitored with callipers and tissues harvested on day 28th of treatment. Histopathological examination of tumour tissues and major organs was performed as well as tumour evaluation of necrosis, apoptosis, cellular proliferation, expression of YAP, TAZ and the mRNA levels of four of their target genes (CTGF, CYR61, ANKRD1 and RHAMM2). Results showed a statistically significant variation in tumour volumes only for the combination therapy and final tumour weight only for the doxorubicin group compared to control. There was no significant difference in tumour necrosis, expression of CC3, ki-67, YAP and TAZ measured by immunohistochemistry and in the mRNA levels of the target genes. Unexpectedly, lung metastases were found in the control group (9) and not in the fluvastatin treated group (7). In addition, mass spectrometry-based quantification of fluvastatin reveals concentrations comparable to levels reported to exert therapeutic effects. This study shows that fluvastatin tumours concentration reached therapeutic levels without having an effect on the hippo pathway or various tumour parameters. Interestingly, only the control group had lung metastases. This study is the first to explore the repurposing of statins for cancer treatment in veterinary medicine.


Assuntos
Neoplasias da Mama , Doenças do Cão , Neoplasias Pulmonares , Glândulas Mamárias Humanas , Neoplasias Mamárias Animais , Humanos , Animais , Cães , Camundongos , Feminino , Fluvastatina/uso terapêutico , Fatores de Transcrição/metabolismo , Xenoenxertos , Glândulas Mamárias Humanas/metabolismo , Linhagem Celular Tumoral , Doenças do Cão/tratamento farmacológico , Doenças do Cão/metabolismo , Neoplasias da Mama/veterinária , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/veterinária , Necrose/veterinária , Doxorrubicina , RNA Mensageiro
19.
Carcinogenesis ; 33(11): 2283-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22871496

RESUMO

Few targeted therapies have been developed for ovarian granulosa cell tumor (GCT), even though it represents 5% of all malignant ovarian tumors in women. As misregulation of PI3K/AKT signaling has been implicated in GCT development, we hypothesized that the AKT signaling effector mammalian target of rapamycin (mTOR) may play a role in the pathogenesis of GCT and could represent a therapeutic target. Analyses of human GCT samples showed an increase in protein levels of mTOR and its downstream effectors RPS6KB1, RPS6, eIF4B and PPARG relative to normal granulosa cells, suggestive of an increase in mTOR pathway activity and increased translational activity and/or protein stability. We next sought to evaluate mTOR as a GCT therapeutic target using the Pten (tm1Hwu/tmiHwu);Ctnnb1 (tm1Mmt/+);Amhr2 (tm3(cre)Bhr/+) (PCA) mouse model, in which mTOR, RPS6KB1, eIF4B and PPARG are upregulated in tumor cells in a manner similar to human GCT. Treatment of PCA mice with the mTOR-specific inhibitor everolimus reduced tumor growth rate (1.5-fold; P < 0.05) and also reduced total tumor burden (4.7-fold; P < 0.05) and increased survival rate (78 versus 44% in the vehicle group) in a PCA surgical model of GCT peritoneal carcinomatosis. Everolimus decreased tumor cell proliferation and tumor cell volume relative to controls (P < 0.05), whereas apoptosis was unaffected. Phosphorylation of RPS6KB1 and RPS6 were decreased (P < 0.05) by everolimus, but RPS6KB1, RPS6, eIF4B and PPARG expressions were not affected. These results suggest that mTOR is a valid and clinically useful pharmacological target for the treatment of GCT, although its inhibition does not reverse all consequences of aberrant PI3K/AKT signaling in the PCA model.


Assuntos
Proliferação de Células , Tumor de Células da Granulosa/prevenção & controle , Imunossupressores/uso terapêutico , Neoplasias Peritoneais/prevenção & controle , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Everolimo , Feminino , Tumor de Células da Granulosa/mortalidade , Tumor de Células da Granulosa/patologia , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/fisiologia , Neoplasias Peritoneais/mortalidade , Neoplasias Peritoneais/secundário , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Sirolimo/uso terapêutico , Taxa de Sobrevida , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/fisiologia
20.
Biol Reprod ; 87(5): 104, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22954793

RESUMO

WNT4 is required for normal ovarian follicle development and female fertility in mice, but how its signal is transduced remains unknown. Fzd1 encodes a WNT receptor whose expression is markedly induced in both mural granulosa cells and cumulus cells during the preovulatory period, in a manner similar to Wnt4. To study the physiological roles of FZD1 in ovarian physiology and to determine whether it serves as receptor for WNT4, Fzd1-null mice were created by gene targeting. Whereas rare Fzd1(-/-) females were sterile because of uterine fibrosis and ovarian tubulostromal hyperplasia, most were subfertile, producing ≈1 fewer pup per litter on average relative to controls. Unlike WNT4-deficient mice, ovaries from Fzd1(-/-) mice had normal weights, numbers of follicles, steroid hormone production, and WNT4 target gene expression levels. Microarray analyses of granulosa cells from periovulatory follicles revealed few genes whose expression was altered in Fzd1(-/-) mice. However, gene expression analyses of cumulus-oocyte complexes (COCs) revealed a blunted response of both oocyte (Zp3, Dppa3, Nlrp5, and Bmp15) and cumulus (Btc, Ptgs2, Sema3a, Ptx3, Il6, Nts, Alcam, and Cspg2) genes to the ovulatory signal, whereas the expression of these genes was not altered in WNT4-deficient COCs from Wnt4(tm1.1Boer/tm1.1Boer);Tg (CYP19A1-cre)1Jri mice. Despite altered gene expression, cumulus expansion appeared normal in Fzd1(-/-) COCs both in vitro and in vivo. Together, these results indicate that Fzd1 is required for normal female fertility and may act in part to regulate oocyte maturation and cumulus cell function, but it is unlikely to function as the sole ovarian WNT4 receptor.


Assuntos
Células do Cúmulo/fisiologia , Fertilidade/fisiologia , Receptores Frizzled/fisiologia , Regulação da Expressão Gênica/fisiologia , Animais , Feminino , Receptores Frizzled/deficiência , Receptores Frizzled/genética , Expressão Gênica , Células da Granulosa/metabolismo , Camundongos , Camundongos Knockout , Análise em Microsséries , Folículo Ovariano/crescimento & desenvolvimento , Ovário/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA