Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 35(26): 9717-29, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134654

RESUMO

Taste perception begins in the oral cavity by interactions of taste stimuli with specific receptors. Specific subsets of taste receptor cells (TRCs) are activated upon tastant stimulation and transmit taste signals to afferent nerve fibers and ultimately to the brain. How specific TRCs impinge on the innervating nerves and how the activation of a subset of TRCs leads to the discrimination of tastants of different qualities and intensities is incompletely understood. To investigate the organization of taste circuits, we used gene targeting to express the transsynaptic tracer barley lectin (BL) in the gustatory system of mice. Because TRCs are not synaptically connected with the afferent nerve fibers, we first analyzed tracer production and transfer within the taste buds (TBs). Surprisingly, we found that BL is laterally transferred across all cell types in TBs of mice expressing the tracer under control of the endogenous Tas1r1 and Tas2r131 promotor, respectively. Furthermore, although we detected the BL tracer in both ganglia and brain, we also found local low-level Tas1r1 and Tas2r131 gene, and thus tracer expression in these tissues. Finally, we identified the Tas1r1 and Tas2r131-expressing cells in the peripheral and CNS using a binary genetic approach. Together, our data demonstrate that genetic transsynaptic tracing from bitter and umami receptor cells does not selectively label taste-specific neuronal circuits and reveal local taste receptor gene expression in the gustatory ganglia and the brain. SIGNIFICANCE STATEMENT: Previous papers described the organization of taste pathways in mice expressing a transsynaptic tracer from transgenes in bitter or sweet/umami-sensing taste receptor cells. However, reported results differ dramatically regarding the numbers of synapses crossed and the reduction of signal intensity after each transfer step. Nevertheless, all groups claimed this approach appropriate for quality-specific visualization of taste pathways. In the present study, we demonstrate that genetic transsynaptic tracing originating from umami and bitter taste receptor cells does not selectively label taste quality-specific neuronal circuits due to lateral transfer of the tracer in the taste bud and taste receptor expression in sensory ganglia and brain. Moreover, we visualized for the first time taste receptor-expressing cells in the PNS and CNS.


Assuntos
Encéfalo/citologia , Gânglios/citologia , Regulação da Expressão Gênica/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lectinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Fosfolipase C beta/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/citologia , Aglutininas do Germe de Trigo/metabolismo
2.
J Agric Food Chem ; 63(39): 8694-704, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26375852

RESUMO

Sensory screening of a series of naturally occurring N-cinnamoyl derivatives of substituted phenethylamines revealed that rubemamine (9, from Chenopodium album) and rubescenamine (10, from Zanthoxylum rubsecens) elicit strong intrinsic umami taste in water at 50 and 10 ppm, respectively. Sensory tests in glutamate- and nucleotide-containing bases showed that the compounds influence the whole flavor profile of savory formulations. Both rubemamine (9) and rubescenamine (10) at 10-100 ppm dose-dependently positively modulated the umami taste of MSG (0.17-0.22%) up to threefold. Among the investigated amides, only rubemamine (9) and rubescenamine (10) are able to directly activate the TAS1R1-TAS1R3 umami taste receptor. Moreover, both compounds also synergistically modulated the activation of TAS1R1-TAS1R3 by MSG. Most remarkably, rubemamine (9) was able to further positively modulate the IMP-enhanced TAS1R1-TAS1R3 response to MSG ∼ 1.8-fold. Finally, armatamide (11), zanthosinamide (13), and dioxamine (14), which lack intrinsic umami taste in vivo and direct receptor response in vitro, also positively modulated receptor activation by MSG about twofold and the IMP-enhanced MSG-induced TAS1R1-TAS1R3 responses approximately by 50%. In sensory experiments, dioxamine (14) at 25 ppm in combination with 0.17% MSG exhibited a sensory equivalent to 0.37% MSG.


Assuntos
Chenopodium album/química , Aromatizantes/química , Fenetilaminas/química , Extratos Vegetais/química , Glutamato de Sódio/metabolismo , Zanthoxylum/química , Aromatizantes/síntese química , Aromatizantes/metabolismo , Humanos , Estrutura Molecular , Fenetilaminas/síntese química , Fenetilaminas/metabolismo , Extratos Vegetais/síntese química , Extratos Vegetais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA