Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Angew Chem Int Ed Engl ; 63(28): e202400382, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619863

RESUMO

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.

2.
Angew Chem Int Ed Engl ; 62(21): e202301021, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876918

RESUMO

Metal-organic frameworks (MOFs) with encapsulated nanoparticles (NPs) enjoy a vastly expanded application potential in catalysis, filtration, and sensing. The selection of particular modified core-NPs has yielded partial successes in overcoming lattice mismatch. However, restrictions on the choice of NPs not only limit the diversity, but also affect the properties of the hybrid materials. Here, we show a versatile synthesis strategy using a representative set of seven MOF-shells and six NP-cores that are fine-tuned to incorporate from single to hundreds of cores in mono-, bi-, tri- and quaternary composites. This method does not require the presence of any specific surface structures or functionalities on the pre-formed cores. Our key point is to regulate the diffusion rate of alkaline vapors that deprotonate organic linkers and trigger the controlled MOF-growth and encapsulation of NPs. This strategy is expected to pave the way for the exploration of more sophisticated MOF-nanohybrids.

3.
Chemistry ; 28(33): e202200705, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35404526

RESUMO

Semiconducting carbon nitride polymers are used in metal-free photocatalysts and in opto-electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials - 2D layered poly(triazine imide) (PTI) and hydrogen-bonded melem hydrate - obtained from three low-melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI. The size of the anion plays a significant role in the formation process of the condensed carbon nitride polymers, and it suggests a strong templating effect. The smaller anions (chloride and bromide) become incorporated into triazine (C3 N3 )-based PTI frameworks. The larger iodide does not stabilize the formation of a triazine-based polymer, but instead it leads to the formation of the heptazine (C6 N7 )-based hydrogen-bonded melem hydrate as the main crystalline phase. Melem hydrate, obtained as single-crystalline powders, was compared with PTI in photocatalytic hydrogen evolution from water and in an OLED device. Further, the emergence of each carbon nitride species from its corresponding salt eutectic was rationalized via density functional theory calculations. This study highlights the possibilities to further tailor the properties of eutectic salt melts for ionothermal synthesis of organic functional materials.

4.
Chem Soc Rev ; 50(20): 11559-11576, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661213

RESUMO

To this day, the active components of integrated circuits consist mostly of (semi-)metals. Concerns for raw material supply and pricing aside, the overreliance on (semi-)metals in electronics limits our abilities (i) to tune the properties and composition of the active components, (ii) to freely process their physical dimensions, and (iii) to expand their deployment to applications that require optical transparency, mechanical flexibility, and permeability. 2D organic semiconductors match these criteria more closely. In this review, we discuss a number of 2D organic materials that can facilitate charge transport across and in-between their π-conjugated layers as well as the challenges that arise from modulation and processing of organic polymer semiconductors in electronic devices such as organic field-effect transistors.

5.
Angew Chem Int Ed Engl ; 61(3): e202111749, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34634165

RESUMO

Poly(triazine imide) (PTI) is a highly crystalline semiconductor, and though no techniques exist that enable synthesis of macroscopic monolayers of PTI, it is possible to study it in thin layer device applications that are compatible with its polycrystalline, nanoscale morphology. We find that the by-product of conventional PTI synthesis is a C-C carbon-rich phase that is detrimental for charge transport and photoluminescence. An optimized synthetic protocol yields a PTI material with an increased quantum yield, enabled photocurrent and electroluminescence. We report that protonation of the PTI structure happens preferentially at the pyridinic N atoms of the triazine rings, is accompanied by exfoliation of PTI layers, and contributes to increases in quantum yield and exciton lifetimes. This study describes structure-property relationships in PTI that link the nature of defects, their formation, and how to avoid them with the optical and electronic performance of PTI. On the basis of our findings, we create an OLED prototype with PTI as the active, metal-free material.

7.
Chemistry ; 25(53): 12342-12348, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31322767

RESUMO

Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5 -phosphinine (C5 P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π-conjugated, covalent phosphinine-based framework (CPF-1) through Suzuki-Miyaura coupling. CPF-1 is a weakly porous polymer glass (72.4 m2 g-1 BET at 77 K) with green fluorescence (λmax =546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co-catalyst at a rate of 33.3 µmol h-1 g-1 . These results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine-based frameworks show promising electronic and optical properties, which might spark future interest in their applications in light-emitting devices and heterogeneous catalysis.

8.
Angew Chem Int Ed Engl ; 58(28): 9394-9398, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31070846

RESUMO

Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material "beyond graphene". Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.

9.
Chemistry ; 24(46): 11916-11921, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30024068

RESUMO

Light-driven water splitting is a potential source of abundant, clean energy, yet efficient charge-separation and size and position of the bandgap in heterogeneous photocatalysts are challenging to predict and design. Synthetic attempts to tune the bandgap of polymer photocatalysts classically rely on variations of the sizes of their π-conjugated domains. However, only donor-acceptor dyads hold the key to prevent undesired electron-hole recombination within the catalyst via efficient charge separation. Building on our previous success in incorporating electron-donating, sulphur-containing linkers and electron-withdrawing, triazine (C3 N3 ) units into porous polymers, we report the synthesis of six visible-light-active, triazine-based polymers with a high heteroatom-content of S and N that photocatalytically generate H2 from water: up to 915 µmol h-1 g-1 with Pt co-catalyst, and-as one of the highest to-date reported values -200 µmol h-1 g-1 without. The highly modular Sonogashira-Hagihara cross-coupling reaction we employ, enables a systematic study of mixed (S, N, C) and (N, C)-only polymer systems. Our results highlight that photocatalytic water-splitting does not only require an ideal optical bandgap of ≈2.2 eV, but that the choice of donor-acceptor motifs profoundly impacts charge-transfer and catalytic activity.

10.
Angew Chem Int Ed Engl ; 57(43): 14188-14192, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159980

RESUMO

Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine π-conjugated electron-withdrawing triazine (C3 N3 ) and electron donating, sulfur-containing moieties as covalently bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects.

11.
Chemistry ; 23(53): 13023-13027, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28727178

RESUMO

Donor-acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur- and nitrogen-containing porous polymers (SNPs) are obtained via Sonogashira-Hagihara cross-coupling and combine electron-withdrawing triazine (C3 N3 ) and electron-donating, sulfur-containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.67 to 2.58 eV) and nanoscale ordering of these microporous materials with BET surface areas of up to 545 m2 g-1 and CO2 capacities up to 1.56 mmol g-1 . Our results highlight the advantages of the modular design of SNPs, and one of the highest photocatalytic hydrogen evolution rates for a cross-linked polymer without Pt co-catalyst is attained (194 µmol h-1 g-1 ).

13.
Angew Chem Int Ed Engl ; 53(29): 7450-5, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24838808

RESUMO

Graphitic carbon nitride has been predicted to be structurally analogous to carbon-only graphite, yet with an inherent bandgap. We have grown, for the first time, macroscopically large crystalline thin films of triazine-based, graphitic carbon nitride (TGCN) using an ionothermal, interfacial reaction starting with the abundant monomer dicyandiamide. The films consist of stacked, two-dimensional (2D) crystals between a few and several hundreds of atomic layers in thickness. Scanning force and transmission electron microscopy show long-range, in-plane order, while optical spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations corroborate a direct bandgap between 1.6 and 2.0 eV. Thus TGCN is of interest for electronic devices, such as field-effect transistors and light-emitting diodes.


Assuntos
Grafite/química , Nitrilas/química , Semicondutores , Triazinas/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Difração de Raios X
14.
Macromolecules ; 57(4): 1829-1845, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435679

RESUMO

Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to their pronounced physical aging. In this study, a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO, was incorporated as a nanofiller (concentration range 0-10 wt %) into a PIM-1 matrix forming dense films with a thickness of ca. 100 µm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on an nanoaggregate level with domains up to 100 nm, as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method, the gas permeability and the permselectivity were determined for N2, O2, CH4, and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50% increase compared to pure PIM-1) was observed for a concentration of 5 wt % of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt %.

15.
Macromol Rapid Commun ; 34(10): 850-4, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23512848

RESUMO

The carbon nitride poly(triazine imide) with intercalated bromide ions is a layered, graphitic material of 2D covalently bonded molecular sheets with an exceptionally large gallery height of 3.52 Å due to the intercalated bromide anions. The material can be cleaved both mechanically and chemically into thin sheets and scrolls analogous to the carbon-only systems graphite and graphene.


Assuntos
Cristalização/métodos , Fenômenos Mecânicos , Nitrilas/química , Brometos/química , Imidas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Soluções , Espectrofotometria Ultravioleta
16.
Chem Sci ; 14(23): 6269-6277, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325148

RESUMO

Graphitic carbon nitrides are covalently-bonded, layered, and crystalline semiconductors with high thermal and oxidative stability. These properties make graphitic carbon nitrides potentially useful in overcoming the limitations of 0D molecular and 1D polymer semiconductors. In this contribution, we study structural, vibrational, electronic and transport properties of nano-crystals of poly(triazine-imide) (PTI) derivatives with intercalated Li- and Br-ions and without intercalates. Intercalation-free poly(triazine-imide) (PTI-IF) is corrugated or AB stacked and partially exfoliated. We find that the lowest energy electronic transition in PTI is forbidden due to a non-bonding uppermost valence band and that its electroluminescence from the π-π* transition is quenched which severely limits their use as emission layer in electroluminescent devices. THz conductivity in nano-crystalline PTI is up to eight orders of magnitude higher than the macroscopic conductivity of PTI films. We find that the charge carrier density of PTI nano-crystals is among the highest of all known intrinsic semiconductors, however, macroscopic charge transport in films of PTI is limited by disorder at crystal-crystal interfaces. Future device applications of PTI will benefit most from single crystal devices that make use of electron transport in the lowest, π-like conduction band.

17.
J Am Chem Soc ; 133(41): 16566-71, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21899280

RESUMO

Control over pore size, shape, and connectivity in synthetic porous materials is important in applications such as separation, storage, and catalysis. Crystalline organic cage molecules can exhibit permanent porosity, but there are few synthetic methods to control the crystal packing and hence the pore connectivity. Typically, porosity is either 'intrinsic' (within the molecules) or 'extrinsic' (between the molecules)--but not both. We report a supramolecular approach to the assembly of porous organic cages which involves bulky directing groups that frustrate the crystal packing. This generates, in a synthetically designed fashion, additional 'extrinsic' porosity between the intrinsically porous cage units. One of the molecular crystals exhibits an apparent Brunauer-Emmett-Teller surface area of 854 m(2) g(-1), which is higher than that of unfunctionalized cages of the same dimensions. Moreover, connectivity between pores, and hence guest uptakes, can be modulated by the introduction of halogen bonding motifs in the cage modules. This suggests a broader approach to the supramolecular engineering of porosity in molecular organic crystals.


Assuntos
Compostos Orgânicos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Compostos Orgânicos/síntese química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
18.
Langmuir ; 27(7): 3626-37, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21355590

RESUMO

Differential scanning calorimetry (DSC) and X-ray powder diffraction (PXRD) have been used to determine the phase behavior of the binary mixtures of undecanoic acid (A) and undecylamine (B) in the bulk. In addition, we report DSC data that indicates very similar behavior for the solid monolayers of these materials adsorbed on the surface of graphite. The two species are found to form a series of stoichiometric complexes of the type AB, A(2)B, and A(3)B on the acid rich side of the phase diagram. Interestingly, no similar series of complexes is evident on the amine rich side. As a result of this complexation, the solid monolayers of the binary mixtures exhibit a very pronounced enhancement in stability relative to the pure adsorbates.

19.
Chem Sci ; 12(38): 12661-12666, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703551

RESUMO

Graphdiyne polymers have interesting electronic properties due to their π-conjugated structure and modular composition. Most of the known synthetic pathways for graphdiyne polymers yield amorphous solids because the irreversible formation of carbon-carbon bonds proceeds under kinetic control and because of defects introduced by the inherent chemical lability of terminal alkyne bonds in the monomers. Here, we present a one-pot surface-assisted deprotection/polymerisation protocol for the synthesis of crystalline graphdiynes over a copper surface starting with stable trimethylsilylated alkyne monomers. In comparison to conventional polymerisation protocols, our method yields large-area crystalline thin graphdiyne films and, at the same time, minimises detrimental effects on the monomers like oxidation or cyclotrimerisation side reactions typically associated with terminal alkynes. A detailed study of the reaction mechanism reveals that the deprotection and polymerisation of the monomer is promoted by Cu(ii) oxide/hydroxide species on the as-received copper surface. These findings pave the way for the scalable synthesis of crystalline graphdiyne-based materials as cohesive thin films.

20.
Ophthalmologe ; 116(10): 925-929, 2019 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-31535190

RESUMO

BACKGROUND: Acute toxicity of perfluorocarbon liquids (PFCL) is a relevant problem in retinal surgery due to impurities in the medicinal product. OBJECTIVE: This article gives an overview of the current problems, possible explanations, interactions with other medicinal products and approaches to improved patient safety. RESULTS: Toxicity is caused by impurities in the raw material but can also be caused by interactions with other medicinal products or drugs. The current test procedures do not ideally represent the ophthalmological application but there are promising activities to set the course for the future. CONCLUSION: The use of PFCL in retinal surgery is generally considered safe. Users should pay attention to the quality of medicinal products.


Assuntos
Fluorocarbonos , Humanos , Procedimentos Cirúrgicos Oftalmológicos , Retina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA