Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Acta Neuropathol ; 145(6): 773-791, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058170

RESUMO

Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.


Assuntos
Esclerose Lateral Amiotrófica , Neuropeptídeos , Masculino , Camundongos , Animais , Superóxido Dismutase-1 , Neuropeptídeos/metabolismo , Orexinas , Ingestão de Alimentos , Redução de Peso
2.
Proc Natl Acad Sci U S A ; 117(25): 14473-14481, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513737

RESUMO

Hypothalamic tanycytes are chemosensitive glial cells that contact the cerebrospinal fluid in the third ventricle and send processes into the hypothalamic parenchyma. To test whether they can activate neurons of the arcuate nucleus, we targeted expression of a Ca2+-permeable channelrhodopsin (CatCh) specifically to tanycytes. Activation of tanycytes ex vivo depolarized orexigenic (neuropeptide Y/agouti-related protein; NPY/AgRP) and anorexigenic (proopiomelanocortin; POMC) neurons via an ATP-dependent mechanism. In vivo, activation of tanycytes triggered acute hyperphagia only in the fed state during the inactive phase of the light-dark cycle.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiopatologia , Células Ependimogliais/fisiologia , Hiperfagia/fisiopatologia , Neurônios/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/diagnóstico por imagem , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Genes Reporter , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Rede Nervosa/fisiologia , Neuropeptídeo Y/metabolismo , Imagem Óptica , Optogenética , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/metabolismo , Técnicas Estereotáxicas
3.
Curr Opin Neurol ; 34(5): 773-780, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343139

RESUMO

PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting upper and lower motor neurons, inexorably leading to an early death. Defects in energy metabolism have been associated with ALS, including weight loss, increased energy expenditure, decreased body fat mass and increased use of lipid nutrients at the expense of carbohydrates. We review here recent findings on impaired energy metabolism in ALS, and its clinical importance. RECENT FINDINGS: Hypothalamic atrophy, as well as alterations in hypothalamic peptides controlling energy metabolism, have been associated with metabolic derangements. Recent studies showed that mutations causing familial ALS impact various metabolic pathways, in particular mitochondrial function, and lipid and carbohydrate metabolism, which could underlie these metabolic defects in patients. Importantly, slowing weight loss, through high caloric diets, is a promising therapeutic strategy, and early clinical trials indicated that it might improve survival in at least a subset of patients. More research is needed to improve these therapeutic strategies, define pharmacological options, and refine the population of ALS patients that would benefit from these approaches. SUMMARY: Dysfunctional energy homeostasis is a major feature of ALS clinical picture and emerges as a potential therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Metabolismo Energético , Homeostase , Humanos , Neurônios Motores
4.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R994-R1003, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826442

RESUMO

In vertebrates, the energy balance process is tightly controlled by complex neural circuits that sense metabolic signals and adjust food intake and energy expenditure in line with the physiological requirements of optimal conditions. Within neural networks controlling energy balance, tanycytes are peculiar ependymoglial cells that are nowadays recognized as multifunctional players in the metabolic hypothalamus. However, the physiological function of hypothalamic tanycytes remains unclear, creating a number of ambiguities in the field. Here, we review data accumulated over the years that demonstrate the physiological function of tanycytes in the maintenance of metabolic homeostasis, opening up new research avenues. The presumed involvement of tanycytes in the pathophysiology of metabolic disorders and age-related neurodegenerative diseases will be finally discussed.


Assuntos
Metabolismo Energético/fisiologia , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Neuroglia/citologia , Neurônios/citologia , Animais , Homeostase/fisiologia , Humanos
5.
Glia ; 65(5): 773-789, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205335

RESUMO

Hypothalamic tanycytes are glial-like glucosensitive cells that contact the cerebrospinal fluid of the third ventricle, and send processes into the hypothalamic nuclei that control food intake and body weight. The mechanism of tanycyte glucosensing remains undetermined. While tanycytes express the components associated with the glucosensing of the pancreatic ß cell, they respond to nonmetabolisable glucose analogues via an ATP receptor-dependent mechanism. Here, we show that tanycytes in rodents respond to non-nutritive sweeteners known to be ligands of the sweet taste (Tas1r2/Tas1r3) receptor. The initial sweet tastant-evoked response, which requires the presence of extracellular Ca2+ , leads to release of ATP and a larger propagating Ca2+ response mediated by P2Y1 receptors. In Tas1r2 null mice the proportion of glucose nonresponsive tanycytes was greatly increased in these mice, but a subset of tanycytes retained an undiminished sensitivity to glucose. Our data demonstrate that the sweet taste receptor mediates glucosensing in about 60% of glucosensitive tanycytes while the remaining 40% of glucosensitive tanycytes use some other, as yet unknown mechanism.


Assuntos
Glucose/metabolismo , Hipotálamo/metabolismo , Paladar/fisiologia , Animais , Cálcio/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Purinérgicos P2Y1/metabolismo
6.
Gen Comp Endocrinol ; 188: 218-25, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23583766

RESUMO

In the present study, we investigated the role of the androgen receptor (AR) in the nervous system in the regulation of aggressive behavior and arginine vasopressin and galanin systems by testosterone. For this purpose, we used a conditional mouse line selectively lacking AR gene in the nervous system, backcrossed onto the C57BL/6J strain. Adult males were gonadectomized and supplemented with similar amounts of testosterone. When tested on two consecutive days in the resident intruder paradigm, fewer males of the mutant group exhibited aggressive behavior compared to their control littermates. In addition, a high latency to the first offensive attack was observed for the few animals that exhibited fighting behavior. This alteration was associated with a normal anogenital chemoinvestigation of intruder males. In olfactory discrimination tasks, sexual experience enhanced preference towards female-soiled bedding rather than male-soiled bedding and estrus females rather than intact males, regardless of genotype. This indicated that the behavioral alteration induced by neural AR mutation occurs in brain areas located downstream from the olfactory bulb. Quantification of the sexually dimorphic cell populations expressing preprovasopressin and galanin mRNAs in the bed nucleus of stria terminalis (BNST) and vasopressin-neurophysin 2 and galanin immunoreactivity in the lateral septum showed no significant differences between the two genotypes. The present findings indicate that the neural AR is required in the expression of aggressive behavior but not in the sexual differentiation of AVP and galanin cell number in the BNST and fiber immunoreactivity in the lateral septum. They also suggest that AR in the nervous system could mediate activational effects of testosterone in the regulation of aggressive behavior during adulthood.


Assuntos
Arginina Vasopressina/metabolismo , Galanina/metabolismo , Receptores Androgênicos/metabolismo , Agressão/fisiologia , Animais , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso/metabolismo , RNA Mensageiro/genética , Receptores Androgênicos/genética , Testosterona/metabolismo
7.
J Pineal Res ; 52(4): 376-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22017374

RESUMO

Seasonal mammals typically of temperate or boreal habitats use the predictable annual cycle of daylength to initiate a suite of physiological and behavioural changes in anticipation of adverse environmental winter conditions, unfavourable for survival and reproduction. Daylength is encoded as the duration of production of the pineal hormone melatonin, but how the melatonin signal is decoded has been elusive. From the studies carried out in birds and mammals together with the advent of technologies such as microarray analysis of gene expression, progress has been achieved to demystify how seasonal physiology is regulated in response to the duration of melatonin signalling. The critical tissue for the action of melatonin is the pars tuberalis (PT) where melatonin receptors are located. At the molecular level, regulation of cyclic adenosine monophosphate (cAMP) signalling in this tissue is likely to be a key event for melatonin action, either an acute inhibitory action or sensitization of this pathway by prolonged stimulation of melatonin receptors reflecting durational melatonin presence. Melatonin action at the PT has been shown to have both positive and negative effects on gene transcription, incorporating components of the circadian clock as part of the mechanism of decoding the melatonin signal and regulating thyrotrophin-stimulating hormone (TSH) expression, a key output hormone of the PT. Microarray analysis of gene expression of PT tissue exposed to long and short photoperiods has identified important new genes that may be regulated by melatonin and contributing to the seasonal regulation of TSH production by this tissue. In the brain, tanycytes lining the third ventricle of the hypothalamus and regulation of thyroid hormone synthesis by PT-derived TSH in these cells are now established as an important component of the pathway leading to seasonal changes in physiology. Beyond the tanycyte, identified changes in gene expression for neuropeptides, receptors and other signalling molecules pinpoint some of the areas of the brain, the hypothalamus in particular, that are likely to be involved in the regulation of seasonal physiology.


Assuntos
Peso Corporal/fisiologia , Ritmo Circadiano/fisiologia , Reprodução/fisiologia , Animais , Humanos , Hipotálamo/fisiologia , Melatonina , Hipófise/fisiologia , Estações do Ano , Tireotropina/fisiologia
8.
Glia ; 59(11): 1695-705, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21769945

RESUMO

The objective of this study is to investigate the impact of photoperiod on the temporal and spatial expression of genes involved in glucose metabolism in the brain of the seasonal mammal Phodopus sungorus (Siberian hamster). In situ hybridization was performed on brain sections obtained from male hamsters held in long photoperiod (high body weight and developed testes) or short photoperiod (reduced body weight with testicular regression). This analysis revealed upregulation in expression of genes involved in glycogen and glucose metabolism in short photoperiod and localized to the tanycyte layer of the third ventricle. On the basis of these data and a previously identified photoperiod-dependent increase in activity of neighboring hypothalamic neurons, we hypothesized that the observed expression changes may reflect alteration in either metabolic fuel or precursor neurotransmitter supply to surrounding neurons. Gene expression analysis was performed for genes involved in lactate and glutamate transport. This analysis showed that the gene for the lactate transporter MCT2 and glutamate transporter GLAST was decreased in the tanycyte layer in short photoperiod. Expression of mRNA for glutamine synthetase, the final enzyme in the synthesis of the neuronal neurotransmitter precursor, glutamine, was also decreased in short photoperiod. These data suggest a role for tanycytes in modulating glutamate concentrations and neurotransmitter supply in the hypothalamic environment.


Assuntos
Epêndima/citologia , Epêndima/metabolismo , Glutamina/biossíntese , Glicogênio/metabolismo , Glicólise/fisiologia , Hipotálamo/fisiologia , Fotoperíodo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo dos Carboidratos/fisiologia , Clonagem Molecular , Cricetinae , DNA Complementar/biossíntese , DNA Complementar/genética , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Hibridização In Situ , Ácido Láctico/metabolismo , Masculino , Microscopia Eletrônica , Neurópilo/metabolismo , Phodopus , Ácido Pirúvico/metabolismo
9.
Front Physiol ; 12: 659973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040543

RESUMO

BACKGROUND: Circadian rhythms in body temperature coordinate peripheral molecular clocks, hence they could potentially predict optimal treatment timing (chronotherapy) in individual patients. Circadian parameters in chest surface body temperature (Chesttemp) were recorded remotely and in real time through the use of wearable sensors. METHODS: The dynamics of circadian oscillations in Chesttemp and core body temperature (Coretemp) and their moderation by sex and age were analysed in 38 men and 50 women, aged 21-78 years. In two studies (ST1 and ST2), Chesttemp was measured every minute and teletransmitted using a BLE-connected sensor for 3.6-28.3 days. Additionally, in ST2, Coretemp was recorded per minute in 33 age- and sex-stratified subjects using electronic ingestible pills with radio-frequency transmissions. Circadian parameters were computed using spectral analysis and cosinor modelling. The temporal relations between Chesttemp and Coretemp cosinor parameters were summarised with principal component (PC) analysis. The effect of sex and age was analysed through multivariate regression. RESULTS: Using spectral analysis, a dominant period of 24- or 12-h was identified in 93.2% of the Chesttemp and in 100% of the Coretemp time series. The circadian parameters varied largely between-subjects both for Chesttemp (ranges: mesors, 33.2-36.6°C; amplitudes, 0.2-2.5°C; acrophases, 14:05-7:40), and Coretemp (mesors, 36.6-37.5°C; amplitudes, 0.2-0.7°C; bathyphases, 23:50-6:50). Higher PC loadings mainly corresponded to (i) large Chesttemp amplitudes, and phase advance of both temperature rhythms for the first PC (PC1, 27.2% of variance var.), (ii) high mesors in both temperature rhythms for PC2 (22.4% var.), and (iii) large Coretemp amplitudes for PC3 (12.9% var.). Chesttemp and Coretemp mesors and PC2 loadings decreased in females, while remaining quite stable in males as a function of age. In contrast, Coretemp amplitude and PC3 loadings increased with age in females, but decreased in males. Finally, older subjects, both female and male, displayed a reduction in ultradian variabilities, and an increase in both Chesttemp circadian amplitude and PC1 loadings. INTERPRETATION: The dynamics relations between Chesttemp and Coretemp rhythms were largely moderated by age and sex, with results suggesting that treatment timing could be most critical for therapeutic index in women and in order people.

10.
Cancers (Basel) ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708950

RESUMO

The dichotomy index (I < O), a quantitative estimate of the circadian regulation of daytime activity and sleep, predicted overall cancer survival and emergency hospitalization, supporting its integration in a mHealth platform. Modifiable causes of I < O deterioration below 97.5%-(I < O)low-were sought in 25 gastrointestinal cancer patients and 33 age- and sex-stratified controls. Rest-activity and temperature were tele-monitored with a wireless chest sensor, while daily activities, meals, and sleep were self-reported for one week. Salivary cortisol rhythm and dim light melatonin onset (DLMO) were determined. Circadian parameters were estimated using Hidden Markov modelling, and spectral analysis. Actionable predictors of (I < O)low were identified through correlation and regression analyses. Median compliance with protocol exceeded 95%. Circadian disruption-(I < O)low-was identified in 13 (52%) patients and four (12%) controls (p = 0.002). Cancer patients with (I < O)low had lower median activity counts, worse fragmented sleep, and an abnormal or no circadian temperature rhythm compared to patients with I < O exceeding 97.5%-(I < O)high-(p < 0.012). Six (I < O)low patients had newly-diagnosed sleep conditions. Altered circadian coordination of rest-activity and chest surface temperature, physical inactivity, and irregular sleep were identified as modifiable determinants of (I < O)low. Circadian rhythm and sleep tele-monitoring results support the design of specific interventions to improve outcomes within a patient-centered systems approach to health care.

11.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430260

RESUMO

BACKGROUNDCircadian timing of treatments can largely improve tolerability and efficacy in patients. Thus, drug metabolism and cell cycle are controlled by molecular clocks in each cell and coordinated by the core body temperature 24-hour rhythm, which is generated by the hypothalamic pacemaker. Individual circadian phase is currently estimated with questionnaire-based chronotype, center-of-rest time, dim light melatonin onset (DLMO), or timing of core body temperature (CBT) maximum (acrophase) or minimum (bathyphase).METHODSWe aimed at circadian phase determination and readout during daily routines in volunteers stratified by sex and age. We measured (a) chronotype, (b) every minute (q1min) CBT using 2 electronic pills swallowed 24 hours apart, (c) DLMO through hourly salivary samples from 1800 hours to bedtime, and (d) q1min accelerations and surface temperature at anterior chest level for 7 days, using a teletransmitting sensor. Circadian phases were computed using cosinor and hidden Markov modeling. Multivariate regression identified the combination of biomarkers that best predicted core temperature circadian bathyphase.RESULTSAmong the 33 participants, individual circadian phases were spread over 5 hours, 10 minutes (DLMO); 7 hours (CBT bathyphase); and 9 hours, 10 minutes (surface temperature acrophase). CBT bathyphase was accurately predicted, i.e., with an error less than 1 hour for 78.8% of the subjects, using a new digital health algorithm (INTime), combining time-invariant sex and chronotype score with computed center-of-rest time and surface temperature bathyphase (adjusted R2 = 0.637).CONCLUSIONINTime provided a continuous and reliable circadian phase estimate in real time. This model helps integrate circadian clocks into precision medicine and will enable treatment timing personalization following further validation.FUNDINGMedical Research Council, United Kingdom; AP-HP Foundation; and INSERM.


Assuntos
Temperatura Corporal/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Cronofarmacoterapia , Modelos Biológicos , Adulto , Idoso , Feminino , Voluntários Saudáveis , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Fotoperíodo , Tecnologia de Sensoriamento Remoto , Adulto Jovem
12.
J Mol Endocrinol ; 54(3): 241-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25878058

RESUMO

Tanycytes play multiple roles in hypothalamic functions, including sensing peripheral nutrients and metabolic hormones, regulating neurosecretion and mediating seasonal cycles of reproduction and metabolic physiology. This last function reflects the expression of TSH receptors in tanycytes, which detect photoperiod-regulated changes in TSH secretion from the neighbouring pars tuberalis. The present overall aim was to determine the signal transduction pathway by which TSH signals in tanycytes. Expression of the TSH receptor in tanycytes of 10-day-old Sprague Dawley rats was observed by in situ hybridisation. Primary ependymal cell cultures prepared from 10-day-old rats were found by immunohistochemistry to express vimentin but not GFAP and by PCR to express mRNA for Dio2, Gpr50, Darpp-32 and Tsh receptors that are characteristic of tanycytes. Treatment of primary tanycyte/ependymal cultures with TSH (100  IU/l) increased cAMP as assessed by ELISA and induced a cAMP-independent increase in the phosphorylation of ERK1/2 as assessed by western blot analysis. Furthermore, TSH (100  IU/l) stimulated a 2.17-fold increase in Dio2 mRNA expression. We conclude that TSH signal transduction in cultured tanycytes signals via Gαs to increase cAMP and via an alternative G protein to increase phosphorylation of ERK1/2.


Assuntos
Células Ependimogliais/metabolismo , Receptores da Tireotropina/metabolismo , Tireotropina/fisiologia , Animais , AMP Cíclico/metabolismo , Feminino , Iodeto Peroxidase/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Fosforilação , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro , Iodotironina Desiodinase Tipo II
13.
Trends Neurosci ; 36(2): 91-100, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23332797

RESUMO

Tanycytes, glial-like cells that line the third ventricle, are emerging as components of the hypothalamic networks that control body weight and energy balance. They contact the cerebrospinal fluid (CSF) and send processes that come into close contact with neurons in the arcuate and ventromedial hypothalamic nuclei. Tanycytes are glucosensitive and are able to respond to transmitters associated with arousal and the drive to feed. At least some tanycytes are stem cells and, in the median eminence, may be stimulated by diet to generate new neurons. The quest is on to understand how tanycytes detect and respond to changes in energy balance and how they communicate with the rest of the nervous system to effect their functions.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Células-Tronco Neurais/citologia , Animais , Humanos
14.
PLoS One ; 8(4): e62003, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637944

RESUMO

Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response.


Assuntos
Epêndima/metabolismo , Hormônios Hipotalâmicos/biossíntese , Hipotálamo/metabolismo , Iodeto Peroxidase/metabolismo , Fotoperíodo , Estações do Ano , Adaptação Fisiológica , Animais , Peso Corporal/fisiologia , Cricetinae , Iodeto Peroxidase/biossíntese , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Nestina/biossíntese , Phodopus , Receptor Tipo 3 de Melanocortina/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Proteínas Celulares de Ligação ao Retinol/biossíntese , Somatostatina/biossíntese , Transcriptoma , Vimentina/biossíntese , Iodotironina Desiodinase Tipo II
15.
Endocrinology ; 152(10): 3871-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21846800

RESUMO

The Djungarian hamster displays photoperiodic variations in gonadal size synchronized to the seasons by the nightly secretion of the pineal hormone melatonin. In short photoperiod (SP), the gonads regress in size, and circulating sex steroids levels decline. Thus, the brain is subject to seasonal variations of both melatonin and sex steroids. Tanycytes are specialized glial cells located in the ependymal lining of the third ventricle. They send processes either to the meninges or to blood vessels of the medio-basal hypothalamus. Furthermore, they are known to locally modulate GnRH release in the median eminence and to display seasonal structural changes. Seasonal changes in tanycyte morphology might be mediated either through melatonin or sex steroids. Therefore, we analyzed the effects of photoperiod, melatonin, and sex steroids 1) on tanycyte vimentin expression by immunohistochemistry and 2) on the expression of the neural cell adhesion molecule (NCAM) and polysialic acid as markers of brain plasticity. Vimentin immunostaining was reduced in tanycyte cell bodies and processes in SP. Similarly, tanycytes and their processes contained lower amounts of NCAM in SP. These changes induced by SP exposure could not be restored to long photoperiod (LP) levels by testosterone supplementation. Likewise, castration in LP did not affect tanycyte vimentin or NCAM expression. By contrast, late afternoon melatonin injections mimicking a SP-like melatonin peak in LP hamsters reduced vimentin and NCAM expression. Thus, the seasonal changes in vimentin and NCAM expression in tanycytes are regulated by melatonin independently of seasonal sex steroid changes.


Assuntos
Melatonina/fisiologia , Moléculas de Adesão de Célula Nervosa/análise , Neuroglia/química , Fotoperíodo , Terceiro Ventrículo/química , Vimentina/análise , Animais , Cricetinae , Imuno-Histoquímica , Masculino , Estações do Ano , Ácidos Siálicos/análise , Testosterona/farmacologia , Terceiro Ventrículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA