Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(15): 4702-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837393

RESUMO

Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.


Assuntos
Acetatos/metabolismo , Ácido Acético/metabolismo , Bactérias/metabolismo , Cacau/microbiologia , Bactérias/enzimologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cacau/metabolismo , Etanol/metabolismo , Fermentação
2.
Appl Environ Microbiol ; 79(18): 5670-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851099

RESUMO

In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive (13)C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel (13)C studies with [(13)C6]glucose, [1,2-(13)C2]glucose, and [(13)C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity.


Assuntos
Cacau/metabolismo , Ácidos Carboxílicos/metabolismo , Lactobacillus/metabolismo , Análise do Fluxo Metabólico , Metabolismo dos Carboidratos , Isótopos de Carbono/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo , Modelos Teóricos
3.
Biotechnol Bioeng ; 109(6): 1538-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22252649

RESUMO

In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale-down studies, mimicking the intermittent and continuous nutrient supply of large- and small-scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large-scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large-scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large-scale set-up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre-cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large-scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts.


Assuntos
Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Biotecnologia/métodos , Meios de Cultura/química , Metabolômica , Acetatos/metabolismo , Aminoácidos/metabolismo , Bacillus megaterium/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
4.
Res Microbiol ; 162(10): 1011-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21835241

RESUMO

The electrostatic surface potential of fungal spores is generally regarded as potentially influencing spore aggregation and pellet formation in submerged cultures of filamentous fungi. Spores of Aspergillus niger are typically characterized by negative zeta potentials over a wide range of pH values. In this study, this particular behavior is ascribed to the presence of an extensive melanin coating. It is proposed on the basis of zeta potential and pigment extraction experiments that this outermost layer affects the pH-dependent surface potential in two manners: (i) by the addition of negative charges to the spore surface and (ii) by the pH-dependent release of melanin pigment. Chemical analyses revealed that deprotonation of melanin-bound carboxyl groups is most probably responsible for pigment release under acidic conditions. These findings were incorporated into a simple model which has the ability to qualitatively explain the results of zeta potential experiments and, moreover, to provide the basis for quantitative investigations on the role of electrostatics in spore aggregation.


Assuntos
Aspergillus niger/fisiologia , Esporos Fúngicos/fisiologia , Eletricidade Estática , Aspergillus niger/química , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/ultraestrutura , Meio Ambiente , Concentração de Íons de Hidrogênio , Melaninas/metabolismo , Microscopia Eletrônica de Transmissão , Esporos Fúngicos/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA