Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 41(4): 648-662, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33262247

RESUMO

Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.


Assuntos
Estrogênios , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Animais , Encéfalo/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Espinhas Dendríticas , Ciclo Estral , Estro , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/genética , Memória Espacial , Útero/inervação , Útero/fisiopatologia
2.
Mol Psychiatry ; 26(8): 4409-4416, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31822817

RESUMO

The origins and neural bases of the current opioid addiction epidemic are unclear. Genetics plays a major role in addiction vulnerability, but cannot account for the recent exponential rise in opioid abuse, so environmental factors must contribute. Individuals with history of early life adversity (ELA) are disproportionately prone to opioid addiction, yet whether ELA interacts with factors such as increased access to opioids to directly influence brain development and function, and cause opioid addiction vulnerability, is unknown. We simulated ELA in female rats and this led to a striking opioid addiction-like phenotype. This was characterized by resistance to extinction, increased relapse-like behavior, and, as in addicted humans, major increases in opioid economic demand. By contrast, seeking of a less salient natural reward was unaffected by ELA, whereas demand for highly palatable treats was augmented. These discoveries provide novel insights into the origins and nature of reward circuit malfunction that may set the stage for addiction.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides , Animais , Feminino , Origem da Vida , Ratos , Recompensa
3.
Brain Behav Immun ; 107: 399-400, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400334

Assuntos
Encéfalo , Microglia , Ratos , Animais
4.
J Neurosci ; 36(44): 11295-11307, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807170

RESUMO

Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. SIGNIFICANCE STATEMENT: Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption. Mechanistically, corticosterone and CRH synergized at the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Notably, blocking both hormones, but not each alone, prevented the enduring memory problems after acute concurrent stresses. Therefore, synergistic actions of corticosterone and CRH underlie enduring memory impairments after concurrent acute stresses, which might be relevant to spatial memory deficits described in posttraumatic stress disorder.


Assuntos
Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Memória Espacial , Estresse Psicológico/fisiopatologia , Doença Aguda , Animais , Corticosterona/administração & dosagem , Hormônio Liberador da Corticotropina/administração & dosagem , Sinergismo Farmacológico , Hipocampo/efeitos dos fármacos , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Estresse Psicológico/complicações
5.
Glia ; 65(9): 1504-1520, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28618077

RESUMO

Evidence suggests many neurological disorders emerge when normal neurodevelopmental trajectories are disrupted, i.e., when circuits or cells do not reach their fully mature state. Microglia play a critical role in normal neurodevelopment and are hypothesized to contribute to brain disease. We used whole transcriptome profiling with Next Generation sequencing of purified developing microglia to identify a microglial developmental gene expression program involving thousands of genes whose expression levels change monotonically (up or down) across development. Importantly, the gene expression program was delayed in males relative to females and exposure of adult male mice to LPS, a potent immune activator, accelerated microglial development in males. Next, a microglial developmental index (MDI) generated from gene expression patterns obtained from purified mouse microglia, was applied to human brain transcriptome datasets to test the hypothesis that variability in microglial development is associated with human diseases such as Alzheimer's and autism where microglia have been suggested to play a role. MDI was significantly increased in both Alzheimer's Disease and in autism, suggesting that accelerated microglial development may contribute to neuropathology. In conclusion, we identified a microglia-specific gene expression program in mice that was used to create a microglia developmental index, which was applied to human datasets containing heterogeneous cell types to reveal differences between healthy and diseased brain samples, and between males and females. This powerful tool has wide ranging applicability to examine microglial development within the context of disease and in response to other variables such as stress and pharmacological treatments.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/crescimento & desenvolvimento , Hipocampo/imunologia , Microglia/metabolismo , Caracteres Sexuais , Animais , Células Cultivadas , Escherichia coli , Ciclo Estral/fisiologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/citologia , Humanos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Neuroimunomodulação/fisiologia
6.
Brain Behav Immun ; 37: 30-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24184474

RESUMO

Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1ß response to an LPS challenge at postnatal day (P)30, whereas their central IL-1ß response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner.


Assuntos
Poluição do Ar , Feto/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Emissões de Veículos/toxicidade , Animais , Ansiedade/induzido quimicamente , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Dieta Hiperlipídica , Feminino , Hipocampo/metabolismo , Hipotálamo/metabolismo , Inflamação , Resistência à Insulina , Masculino , Comportamento Materno , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Fatores Sexuais , Receptor 4 Toll-Like/metabolismo , Aumento de Peso
8.
FASEB J ; 26(11): 4743-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22815382

RESUMO

Emerging evidence suggests environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal air pollution exposure would predispose the offspring to weight gain in adulthood. Pregnant mice were exposed to filtered air (FA) or diesel exhaust (DE) on embryonic days (E) 9-17. Prenatal DE induced a significant fetal brain cytokine response at E18 (46-390% over FA). As adults, offspring were fed either a low-fat diet (LFD) or high-fat diet (HFD) for 6 wk. Adult DE male offspring weighed 12% more and were 35% less active than FA male offspring at baseline, whereas there were no differences in females. Following HFD, DE males gained weight at the same rate as FA males, whereas DE females gained 340% more weight than FA females. DE-HFD males had 450% higher endpoint insulin levels than FA-HFD males, and all males on HFD showed decreased activity and increased anxiety, whereas females showed no differences. Finally, both DE males and females fed HFD showed increased microglial activation (30-66%) within several brain regions. Thus, prenatal air pollution exposure can "program" offspring for increased susceptibility to diet-induced weight gain and neuroinflammation in adulthood in a sex-specific manner.


Assuntos
Encefalopatias/induzido quimicamente , Inflamação/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal , Emissões de Veículos/toxicidade , Aumento de Peso/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia , Gravidez , Fatores Sexuais
9.
Endocrinology ; 164(7)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279575

RESUMO

Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.


Assuntos
Microglia , Neuroimunomodulação , Humanos , Masculino , Feminino , Estresse Psicológico/complicações , Encéfalo , Macrófagos
10.
Alcohol Clin Exp Res (Hoboken) ; 47(2): 336-347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462937

RESUMO

BACKGROUND: Stressful early-life experiences increase the risk of developing an alcohol use disorder. We previously found that male C57BL/6J mice reared under limited bedding and nesting (LBN) conditions, a model of early-life adversity, escalate their ethanol intake in limited-access two-bottle choice (2BC) sessions faster than control (CTL)-reared counterparts when exposed to chronic intermittent ethanol (CIE) vapor inhalation. However, the alcohol consumption of female littermates was not affected by LBN or CIE. In the present study, we sought to determine whether this phenotype reflected a general insensitivity of female mice to the influence of early-life stress on alcohol responses. METHODS: In a first experiment, CTL and LBN females with a history of 2BC combined or not with CIE were tested in affective and nociceptive assays during withdrawal. In a second group of CTL and LBN females, we examined ethanol-induced antinociception, sedation, plasma clearance, and c-Fos induction. RESULTS: In females withdrawn from chronic 2BC, CIE increased digging, reduced grooming, and increased immobility in the tail suspension test regardless of early-life history. In contrast, LBN rearing lowered mechanical nociceptive thresholds regardless of CIE exposure. In females acutely treated with ethanol, LBN rearing facilitated antinociception and delayed the onset of sedation without influencing ethanol clearance rate or c-Fos induction in the paraventricular nucleus of the hypothalamus, paraventricular nucleus of the thalamus, central nucleus of the amygdala, or auditory cortex. CONCLUSION: CIE withdrawal produced multiple indices of negative affect in C57BL/6J females, suggesting that their motivation to consume alcohol may differ from air-exposed counterparts despite equivalent intake. Contrasted with our previous findings in males, LBN-induced mechanical hyperalgesia in chronic alcohol drinkers was specific to females. Lower nociceptive thresholds combined with increased sensitivity to the acute antinociceptive effect of ethanol may contribute to reinforcing ethanol consumption in LBN females but are not sufficient to increase their intake.


Assuntos
Alcoolismo , Estresse Psicológico , Animais , Feminino , Camundongos , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Etanol , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos
11.
Biol Psychiatry Glob Open Sci ; 3(1): 99-109, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712559

RESUMO

Background: Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods: Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results: Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions: We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.

12.
Front Cell Neurosci ; 16: 867217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496905

RESUMO

Microglia are now well-known as integral regulators of brain development, phagocytosing whole neurons, and pruning weak or excess synapses in order to sculpt and refine immature circuits. However, the importance of neuronal subtype in guiding microglial activity has not received much attention until recently. This perspective will delineate what is known about this topic so far, starting with the developing brain as a whole and then focusing on the developing hypothalamus in particular. There is emerging evidence that subpopulations of microglia treat excitatory and inhibitory neurons differently, and our recent work has shown that even the type of neuropeptide produced by the nearby neurons is important. For example, microglia abutting corticotropin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus of the hypothalamus (PVN) engulf fewer excitatory synapses than do microglia on the borders of the PVN that are not contacting CRH+ neurons. Potential future directions and technical considerations will be discussed in an effort to catalyze this emerging and exciting area of research. Applications of this research may hold promise in creating more specific therapies that target unique subtypes of microglia-neuron interactions in the atypically developing brain.

13.
Front Behav Neurosci ; 16: 1013865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268470

RESUMO

Early-life adversity (ELA) is known to alter brain circuit maturation as well as increase vulnerability to cognitive and emotional disorders. However, the importance of examining sex as a biological variable when researching the effects of ELA has not been considered until recently. This perspective discusses the sex-specific behavioral outcomes of ELA in both humans and animal models, then proposes microglia-mediated mechanisms as a potential underlying cause. Recent work in rodent models suggests that ELA provokes cognitive deficits, anhedonia, and alcohol abuse primarily in males, whereas females exhibit greater risk-taking and opioid addiction-related behaviors. In addition, emerging evidence identifies microglia as a key target of ELA. For example, we have recently shown that ELA inhibits microglial synapse engulfment and process dynamics in male mice, leading to an increase in excitatory synapse number onto corticotrophin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus of the hypothalamus (PVN) and aberrant stress responses later in life. However, ELA-induced synaptic rewiring of neural circuits differs in females during development, resulting in divergent behavioral outcomes. Thus, examining the role of microglia in the sex-specific mechanisms underlying ELA-induced neuropsychiatric disorders is an important topic for future research.

14.
Transl Psychiatry ; 12(1): 251, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35705547

RESUMO

In humans, early-life adversity (ELA) such as trauma, poverty, and chaotic environment is linked to increased risk of later-life emotional disorders including depression and substance abuse. These disorders involve underlying disruption of reward circuits and likely vary by sex. Accordingly, we previously found that ELA leads to anhedonia for natural rewards and cocaine in male rodents, whereas in females ELA instead increases vulnerability to addiction-like use of opioid drugs and palatable food. While these findings suggest that ELA-induced disruption of reward circuitry may differ between the sexes, the specific circuit nodes that are influenced by ELA in either sex remain poorly understood. Here, in adult male Sprague-Dawley rats, we ask how ELA impacts opioid addiction-relevant behaviors that we previously tested after ELA in females. We probe potential circuit mechanisms in males by assessing opioid-associated neuronal activation in stress and reward circuit nodes including nucleus accumbens (NAc), amygdala, medial prefrontal cortex (mPFC), and paraventricular thalamus. We find that ELA diminishes opioid-seeking behaviors in males, and alters heroin-induced activation of NAc, PFC, and amygdala, suggesting a potential circuit-based mechanism. These studies demonstrate that ELA leads to behavioral and neurobiological disruptions consistent with anhedonia in male rodents, unlike the increased opioid seeking we previously saw in females. Our findings, taken together with our prior work, suggest that men and women could face qualitatively different mental health consequences of ELA, which may be essential for individually tailoring future intervention strategies.


Assuntos
Experiências Adversas da Infância , Anedonia , Analgésicos Opioides , Animais , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa
15.
Cell Rep ; 38(13): 110600, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354026

RESUMO

Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.


Assuntos
Hormônio Liberador da Corticotropina , Células-Tronco Neurais , Animais , Camundongos , Microglia/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
16.
Nat Metab ; 4(12): 1732-1745, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443520

RESUMO

High maternal weight is associated with detrimental outcomes in offspring, including increased susceptibility to neurological disorders such as anxiety, depression and communicative disorders. Despite widespread acknowledgement of sex biases in the development of these disorders, few studies have investigated potential sex-biased mechanisms underlying disorder susceptibility. Here, we show that a maternal high-fat diet causes endotoxin accumulation in fetal tissue, and subsequent perinatal inflammation contributes to sex-specific behavioural outcomes in offspring. In male offspring exposed to a maternal high-fat diet, increased macrophage Toll-like receptor 4 signalling results in excess microglial phagocytosis of serotonin (5-HT) neurons in the developing dorsal raphe nucleus, decreasing 5-HT bioavailability in the fetal and adult brains. Bulk sequencing from a large cohort of matched first-trimester human samples reveals sex-specific transcriptome-wide changes in placental and brain tissue in response to maternal triglyceride accumulation (a proxy for dietary fat content). Further, fetal brain 5-HT levels decrease as placental triglycerides increase in male mice and male human samples. These findings uncover a microglia-dependent mechanism through which maternal diet can impact offspring susceptibility for neuropsychiatric disorder development in a sex-specific manner.


Assuntos
Placenta , Serotonina , Gravidez , Masculino , Feminino , Camundongos , Animais , Humanos , Encéfalo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta
17.
Physiol Behav ; 224: 113037, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603746

RESUMO

We used a modification of the limited bedding and nesting (LBN) model to evaluate the effects of early-life stress (ELS) on female and male reproductive physiology and behavior in Long-Evans rats. On postnatal day (PD) 2, dams and pups were transferred to a cage containing 100 mL of bedding (LBN condition) or to a cage containing 500 mL of bedding (control condition); bedding conditions remained until PD 10. In female rats, we measured vaginal opening, estrous cyclicity, female sexual behavior and motivation, and anxiety-like behavior. In male rats, we measured preputial separation, the development of male copulatory behavior, sexual motivation, and anxiety-like behavior. We found that relative to controls, female rats reared with LBN experienced precocious puberty and enhanced sexual motivation, but normal estrous cyclicity. Relative to controls, male rats reared with LBN experienced delayed puberty and enhanced sexual motivation, but normal development of copulatory behavior. Anxiety-like behavior was not affected by LBN in either female or male rats. In summary, the ELS of being reared with LBN affected the onset of puberty in the opposite direction in females and males, but enhanced sexual motivation in both. The current study is the first to examine the effects of ELS on sexual motivation using the LBN model. These findings further support the hypothesis that maternal care affects the development of sexual maturation and sexual motivation.


Assuntos
Ansiedade , Comportamento Sexual Animal , Estresse Psicológico , Animais , Feminino , Masculino , Ratos , Copulação , Ratos Long-Evans
18.
Neurobiol Stress ; 13: 100269, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344722

RESUMO

Childhood adversity increases vulnerability to alcohol use disorders and preclinical models are needed to investigate the underlying neurobiological mechanisms. The present study modeled early-life adversity by rearing male and female C57BL/6J mouse pups in a limited bedding and nesting (LBN) environment, which induces erratic maternal care. As adults, mice were given limited access to two-bottle choice (2BC) alcohol drinking, combined or not with chronic intermittent ethanol (CIE) vapor inhalation to induce alcohol dependence. We tested the hypothesis that LBN rearing might exacerbate or facilitate the emergence of the motivational and affective effects of CIE. Consistent with our hypothesis, although LBN-reared males consumed the same baseline levels of alcohol as controls, they escalated their ethanol intake at an earlier stage of CIE exposure, i.e., after 4 rounds vs. 5 rounds for controls. In contrast, females were insensitive to both LBN rearing and CIE exposure. Males were further subjected to a behavioral test battery. Withdrawal from CIE-2BC increased digging activity and lowered mechanical nociceptive thresholds regardless of early-life conditions. On the other hand, LBN-reared CIE-2BC males showed reduced open arm exploration in the elevated plus maze and increased immobility in the tail suspension test compared to alcohol-naïve counterparts, while no group differences were detected among control-reared males. Finally, LBN rearing and alcohol exposure did not affect grooming in response to a sucrose spray (splash test), novel object recognition, or corticosterone levels. In summary, the LBN experience accelerates the transition from moderate to excessive alcohol drinking and produces additional indices of affective dysfunction during alcohol withdrawal in C57BL/6J male mice.

19.
Biol Psychiatry ; 87(10): 875-884, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081365

RESUMO

Disrupted operation of the reward circuitry underlies many aspects of affective disorders. Such disruption may manifest as aberrant behavior including risk taking, depression, anhedonia, and addiction. Early-life adversity is a common antecedent of adolescent and adult affective disorders involving the reward circuitry. However, whether early-life adversity influences the maturation and operations of the reward circuitry, and the potential underlying mechanisms, remain unclear. Here, we present novel information using cutting-edge technologies in animal models to dissect out the mechanisms by which early-life adversity provokes dysregulation of the complex interactions of stress and reward circuitries. We propose that certain molecularly defined pathways within the reward circuitry are particularly susceptible to early-life adversity. We examine regions and pathways expressing the stress-sensitive peptide corticotropin-releasing factor (CRF), which has been identified in critical components of the reward circuitry and interacting stress circuits. Notably, CRF is strongly modulated by early-life adversity in several of these brain regions. Focusing on amygdala nuclei and their projections, we provide evidence suggesting that aberrant CRF expression and function may underlie augmented connectivity of the nucleus accumbens with fear/anxiety regions, disrupting the function of this critical locus of pleasure and reward.


Assuntos
Hormônio Liberador da Corticotropina , Recompensa , Adolescente , Tonsila do Cerebelo/metabolismo , Anedonia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Núcleo Accumbens/metabolismo
20.
Cell Rep ; 33(11): 108511, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326786

RESUMO

Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.


Assuntos
Hipocampo/imunologia , Transtornos da Memória/imunologia , Neurônios/metabolismo , Fatores de Transcrição/imunologia , Animais , Modelos Animais de Doenças , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA