Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Biochem Mol Biol ; 59(1-2): 99-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770626

RESUMO

The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Ligação Proteica , DNA Bacteriano/metabolismo , DNA Bacteriano/genética
2.
Nucleic Acids Res ; 51(8): 3735-3753, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912097

RESUMO

In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs. Here, RecG binding to SSB and SSB peptides was measured in vitro and the RecG/SSB interface was identified. The results show that RecG binds directly and specifically to the SSB-Ct, and not the IDL, through an evolutionarily conserved binding site in the RecG helicase domain. Mutations that block RecG binding to SSB sensitize E. coli to DNA damaging agents and induce the SOS DNA-damage response, indicating formation of the RecG/SSB complex is important in vivo. The broader role of the SSB IDL is also investigated. E. coli ssb mutant strains encoding SSB IDL deletion variants lacking all PxxP motifs retain wildtype growth and DNA repair properties, demonstrating that the SSB PxxP motifs are not major contributors to SSB cellular functions.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , DNA Helicases/genética , Reparo do DNA , Sítios de Ligação , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Ligação Proteica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Nucleic Acids Res ; 51(11): 5714-5742, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37125644

RESUMO

The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN ß-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
J Bacteriol ; 206(4): e0033023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38470036

RESUMO

Tetrameric single-stranded (ss) DNA-binding proteins (SSBs) stabilize ssDNA intermediates formed during genome maintenance reactions in Bacteria. SSBs also recruit proteins important for these processes through direct SSB-protein interactions, including proteins involved in DNA replication restart and recombination processes. SSBs are composed of an N-terminal oligomerization and ssDNA-binding domain, a C-terminal acidic tip that mediates SSB-protein interactions, and an internal intrinsically disordered linker (IDL). Deletions and insertions into the IDL are well tolerated with few phenotypes, although the largest deletions and insertions exhibit some sensitivity to DNA-damaging agents. To define specific DNA metabolism processes dependent on IDL length, ssb mutants that lack 16, 26, 37, or 47 residues of the 57-residue IDL were tested for synthetic phenotypes with mutations in DNA replication restart or recombination genes. We also tested the impact of integrating a fluorescent domain within the SSB IDL using an ssb::mTur2 insertion mutation. Only the largest deletion tested or the insertion mutation causes sensitivity in any of the pathways. Mutations in two replication restart pathways (PriA-B1 and PriA-C) showed synthetic lethalities or small colony phenotypes with the largest deletion or insertion mutations. Recombination gene mutations del(recBCD) and del(ruvABC) show synthetic phenotypes only when combined with the largest ssb deletion. These results suggest that a minimum IDL length is important in some genome maintenance reactions in Escherichia coli. These include pathways involving PriA-PriB1, PriA-PriC, RecFOR, and RecG. The mTur2 insertion in the IDL may also affect SSB interactions in some processes, particularly the PriA-PriB1 and PriA-PriC replication restart pathways.IMPORTANCEssb is essential in Escherichia coli due to its roles in protecting ssDNA and coordinating genome maintenance events. While the DNA-binding core and acidic tip have well-characterized functions, the purpose of the intrinsically disordered linker (IDL) is poorly understood. In vitro studies have revealed that the IDL is important for cooperative ssDNA binding and phase separation. However, single-stranded (ss) DNA-binding protein (SSB) variants with large deletions and insertions in the IDL support normal cell growth. We find that the PriA-PriB1 and PriA-C replication restart, as well as the RecFOR- and RecG-dependent recombination, pathways are sensitive to IDL length. This suggests that cooperativity, phase separation, or a longer spacer between the core and acidic tip of SSB may be important for specific cellular functions.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Genética
5.
Nucleic Acids Res ; 50(4): 2201-2210, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35150260

RESUMO

In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.


Assuntos
Escherichia coli , Recombinases Rec A , Adenosina Trifosfatases/genética , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
6.
J Bacteriol ; 205(12): e0018423, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38019006

RESUMO

IMPORTANCE: DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , DNA Helicases/genética , Reparo do DNA , Dano ao DNA , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA