Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(2): 305-325, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34607911

RESUMO

BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.


Assuntos
DNA Mitocondrial/genética , Síndrome de Gitelman/genética , Mutação , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Pré-Escolar , Feminino , Genótipo , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/patologia , Células HEK293 , Humanos , Lactente , Rim/metabolismo , Rim/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/genética , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Adulto Jovem
2.
Am J Hum Genet ; 104(3): 530-541, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827496

RESUMO

Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno Autístico/etiologia , Deficiência Intelectual/etiologia , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Adolescente , Adulto , Sequência de Aminoácidos , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Prognóstico , Homologia de Sequência , Síndrome , Adulto Jovem
3.
Am J Hum Genet ; 104(1): 139-156, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595372

RESUMO

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.


Assuntos
Deficiência Intelectual/genética , Mutação , Proteína Fosfatase 2/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Células HEK293 , Haploinsuficiência/genética , Humanos , Masculino , Ligação Proteica/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Síndrome
4.
Am J Kidney Dis ; 73(3): 400-403, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30241959

RESUMO

Mutations in the NPHS2 gene, which encodes the podocyte slit diaphragm protein podocin, cause autosomal recessive steroid-resistant nephrotic syndrome (Online Mendelian Inheritance in Man [OMIM] #600995). Basic research and clinical studies have provided important insights about genotype-phenotype correlations. This knowledge allows personalized genetic (risk) counseling and should lead to changes in the advice given to patients. A patient who carries the R229Q variant (which has a high allele frequency of 3.7% in the European population) in combination with a pathogenic variant in exon 7 or 8 is at high risk for developing nephrotic syndrome that may not manifest before adulthood, whereas a patient with 2 pathogenic variants will develop congenital or childhood-onset nephrotic syndrome. In contrast, a patient who carries the R229Q variant in combination with a pathogenic variant in exons 1 to 6 is unlikely to develop nephrotic syndrome. In this article, we review the emerging knowledge about the NPHS2 gene and translate these findings from the bench to practical advice for the clinical bedside.


Assuntos
Aconselhamento Genético , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Síndrome Nefrótica/genética , Variação Genética , Humanos
5.
Kidney Int ; 93(5): 1142-1153, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29459093

RESUMO

Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.


Assuntos
Rim/anormalidades , Mutação , Fatores de Transcrição SOXC/genética , Ureter/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Predisposição Genética para Doença , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos Knockout , Morfogênese , Fenótipo , Fatores de Risco , Fatores de Transcrição SOXC/deficiência , Ureter/metabolismo , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/patologia
6.
Hum Mol Genet ; 25(5): 892-902, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721934

RESUMO

Recently, we marked TRIO for the first time as a candidate gene for intellectual disability (ID). Across diverse vertebrate species, TRIO is a well-conserved Rho GTPase regulator that is highly expressed in the developing brain. However, little is known about the specific events regulated by TRIO during brain development and its clinical impact in humans when mutated. Routine clinical diagnostic testing identified an intragenic de novo deletion of TRIO in a boy with ID. Targeted sequencing of this gene in over 2300 individuals with ID, identified three additional truncating mutations. All index cases had mild to borderline ID combined with behavioral problems consisting of autistic, hyperactive and/or aggressive behavior. Studies in dissociated rat hippocampal neurons demonstrated the enhancement of dendritic formation by suppressing endogenous TRIO, and similarly decreasing endogenous TRIO in organotypic hippocampal brain slices significantly increased synaptic strength by increasing functional synapses. Together, our findings provide new mechanistic insight into how genetic deficits in TRIO can lead to early neuronal network formation by directly affecting both neurite outgrowth and synapse development.


Assuntos
Transtorno Autístico/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Agitação Psicomotora/genética , Sinapses/metabolismo , Adulto , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Criança , Feminino , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Neurogênese , Neurônios/patologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Agitação Psicomotora/metabolismo , Agitação Psicomotora/patologia , Ratos , Análise de Sequência de DNA , Índice de Gravidade de Doença , Sinapses/patologia
7.
Am J Hum Genet ; 97(6): 904-13, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637980

RESUMO

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.


Assuntos
Microtia Congênita/genética , Nanismo/genética , Geminina/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Mutação , Patela/anormalidades , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Ciclo Celular/genética , Pré-Escolar , Microtia Congênita/metabolismo , Nanismo/metabolismo , Nanismo/patologia , Éxons , Feminino , Geminina/metabolismo , Expressão Gênica , Genes Dominantes , Transtornos do Crescimento/metabolismo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Masculino , Micrognatismo/metabolismo , Dados de Sequência Molecular , Patela/metabolismo , Linhagem , Estabilidade Proteica , Proteólise , Splicing de RNA , Alinhamento de Sequência
8.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974258

RESUMO

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Assuntos
Ciliopatias/diagnóstico , Aconselhamento Genético , Testes Genéticos , Doenças Renais Císticas/congênito , Falência Renal Crônica/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idade de Início , Biópsia , Criança , Ciliopatias/complicações , Ciliopatias/genética , Ciliopatias/patologia , Proteínas do Citoesqueleto , Diagnóstico Tardio/prevenção & controle , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Doenças Renais Císticas/complicações , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Falência Renal Crônica/etiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Países Baixos , Sistema de Registros/estatística & dados numéricos , Fatores de Tempo , Ultrassonografia , Sequenciamento do Exoma , Adulto Jovem
9.
J Am Soc Nephrol ; 28(10): 3118-3128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28674042

RESUMO

Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.


Assuntos
Alcalose/genética , Claudinas/genética , Hipopotassemia/genética , Erros Inatos do Transporte Tubular Renal/genética , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem
11.
Ophthalmology ; 124(7): 992-1003, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28412069

RESUMO

PURPOSE: To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN: Case series. PARTICIPANTS: Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS: We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES: IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS: We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS: IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.


Assuntos
Coloboma/genética , DNA/genética , Proteínas do Olho/genética , Estudos de Associação Genética , Macula Lutea/patologia , Mutação , Retinose Pigmentar/genética , Adolescente , Adulto , Criança , Pré-Escolar , Coloboma/diagnóstico , Coloboma/metabolismo , Análise Mutacional de DNA , Eletrorretinografia , Exoma , Proteínas do Olho/metabolismo , Feminino , Genes Recessivos , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/metabolismo , Tomografia de Coerência Óptica , Acuidade Visual , Campos Visuais , Adulto Jovem
12.
Kidney Int ; 89(2): 476-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26489027

RESUMO

The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5­15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed.


Assuntos
Anormalidades Urogenitais/genética , Éxons , Deleção de Genes , Humanos , Análise de Sequência de DNA
13.
Birth Defects Res A Clin Mol Teratol ; 106(7): 596-603, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27040999

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a heterogeneous group of birth defects with a variety of genetic and nongenetic factors suspected of involvement in the etiology. However, little is known about risk factors in specific CAKUT phenotypes. Therefore, we studied potential maternal risk factors in individual phenotypes within the CAKUT spectrum. METHODS: Questionnaire data were collected from parents of 562 children with CAKUT and 2139 healthy controls within the AGORA data- and biobank. Potential maternal risk factors investigated included folic acid use, overweight and obesity, smoking, alcohol consumption, subfertility, and diabetes mellitus. We performed logistic regression analyses to assess associations between these potential risk factors and CAKUT phenotypes. RESULTS: Increased risks of CAKUT were observed for folic acid use and maternal obesity, while fertility treatment by in vitro fertilization or intrauterine insemination and diabetes diagnosed during pregnancy also seem to be associated with CAKUT. Use of multivitamins reduced the risk (odds ratio [OR], 0.5; 95% confidence interval [CI], 0.2-1.0) as opposed to use of folic acid supplements only (OR, 1.3; 95% CI, 1.0-1.8). Folic acid use was associated with duplex collecting systems (OR, 1.8; 95% CI, 1.0-3.4) and vesicoureteral reflux (OR, 1.8; 95% CI, 1.1-2.9) in particular. A relatively strong association was observed between diabetes during pregnancy and posterior urethral valves (OR, 2.6; 95% CI, 1.1-5.9). CONCLUSION: Use of folic acid only seems to be counterproductive for prevention of CAKUT, in contrast to multivitamin use. Furthermore, we observed differences in risk factor patterns among CAKUT phenotypes, which stress the importance of separate analyses for each phenotype. Birth Defects Research (Part A) 106:596-603, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Anormalidades Congênitas , Rim/anormalidades , Obesidade , Gravidez em Diabéticas/epidemiologia , Fumar/efeitos adversos , Inquéritos e Questionários , Adulto , Anormalidades Congênitas/epidemiologia , Anormalidades Congênitas/etiologia , Feminino , Ácido Fólico/uso terapêutico , Humanos , Masculino , Obesidade/complicações , Obesidade/epidemiologia , Gravidez , Fatores de Risco
14.
Birth Defects Res A Clin Mol Teratol ; 106(8): 675-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27150573

RESUMO

BACKGROUND: Research regarding the etiology of birth defects and childhood cancer is essential to develop preventive measures, but often requires large study populations. Therefore, we established the AGORA data- and biobank in the Netherlands. In this study, we describe its rationale, design, and ongoing data collection. METHODS: Children diagnosed with and/or treated for a structural birth defect or childhood cancer and their parents are invited to participate in the AGORA data- and biobank. Controls are recruited through random sampling from municipal registries. The parents receive questionnaires about demographics, family and pregnancy history, health status, prescribed medication, lifestyle, and occupational exposures before and during the index pregnancy. In addition, blood or saliva is collected from children and parents, while medical records are reviewed for diagnostic information. RESULTS: So far, we have collected data from over 6,860 families (3,747 birth defects, 905 childhood cancers, and 2,208 controls). The types of birth defects vary widely and comprise malformations of the digestive, respiratory, and urogenital tracts as well as facial, cardiovascular, kidney, skeletal, and central nervous system anomalies. The most frequently occurring childhood cancer types are acute lymphatic leukemia, Hodgkin and non-Hodgkin lymphoma, Wilms' tumor, and brain and spinal cord tumors. Our genetic and/or epidemiologic studies have been focused on hypospadias, anorectal malformations, congenital anomalies of the kidney and urinary tract (CAKUT), and orofacial clefts. CONCLUSION: The large AGORA data- and biobank offers great opportunities for investigating genetic and nongenetic risk factors for disorders in children and is open to collaborative initiatives. Birth Defects Research (Part A) 106:675-684, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Bancos de Espécimes Biológicos/organização & administração , Anormalidades Congênitas/diagnóstico , Bases de Dados Factuais , Neoplasias/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Anormalidades Congênitas/classificação , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Estilo de Vida , Masculino , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/classificação , Fatores de Risco , Inquéritos e Questionários
15.
PLoS Genet ; 9(3): e1003360, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516378

RESUMO

Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.


Assuntos
Replicação do DNA/genética , Nanismo/genética , Transtornos do Crescimento/genética , Microcefalia/genética , Micrognatismo/genética , Complexo de Reconhecimento de Origem/genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Centríolos/genética , Centríolos/metabolismo , Cílios/genética , Cílios/fisiologia , Microtia Congênita , Orelha/anormalidades , Fácies , Transtornos do Crescimento/etiologia , Humanos , Micrognatismo/etiologia , Patela/anormalidades , Proteínas Serina-Treonina Quinases/genética , Fase S/genética
16.
Am J Hum Genet ; 90(3): 426-33, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22341970

RESUMO

Revertant mosaicism is an infrequently observed phenomenon caused by spontaneous correction of a pathogenic allele. We have observed such reversions caused by mitotic recombination of mutant TERC (telomerase RNA component) alleles in six patients from four families affected by dyskeratosis congenita (DC). DC is a multisystem disorder characterized by mucocutaneous abnormalities, dystrophic nails, bone-marrow failure, lung fibrosis, liver cirrhosis, and cancer. We identified a 4 nt deletion in TERC in a family with an autosomal-dominant form of DC. In two affected brothers without bone-marrow failure, sequence analysis revealed pronounced overrepresentation of the wild-type allele in blood cells, whereas no such skewing was observed in the other tissues tested. These observations suggest that this mosaic pattern might have resulted from somatic reversion of the mutated allele to the normal allele in blood-forming cells. SNP-microarray analysis on blood DNA from the two brothers indeed showed independent events of acquired segmental isodisomy of chromosome 3q, including TERC, indicating that the reversions must have resulted from mitotic recombination events. Subsequently, after developing a highly sensitive method of detecting mosaic homozygosity, we have found four additional cases with a mosaic-reversion pattern in blood cells; these four cases are part of a cohort of 17 individuals with germline TERC mutations. This shows that revertant mosaicism is a recurrent event in DC. This finding has important implications for improving diagnostic testing and understanding the variable phenotype of DC.


Assuntos
Disceratose Congênita/genética , Mitose/genética , Mosaicismo , RNA/genética , Recombinação Genética , Telomerase/genética , Adolescente , Adulto , Idoso , Alelos , Linhagem da Célula , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Mutação em Linhagem Germinativa , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Adulto Jovem
17.
Am J Hum Genet ; 90(2): 290-4, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22265017

RESUMO

Genitopatellar syndrome (GPS) is a rare disorder in which patellar aplasia or hypoplasia is associated with external genital anomalies and severe intellectual disability. Using an exome-sequencing approach, we identified de novo mutations of KAT6B in five individuals with GPS; a single nonsense variant and three frameshift indels, including a 4 bp deletion observed in two cases. All identified mutations are located within the terminal exon of the gene and are predicted to generate a truncated protein product lacking evolutionarily conserved domains. KAT6B encodes a member of the MYST family of histone acetyltranferases. We demonstrate a reduced level of both histone H3 and H4 acetylation in patient-derived cells suggesting that dysregulation of histone acetylation is a direct functional consequence of GPS alleles. These findings define the genetic basis of GPS and illustrate the complex role of the regulation of histone acetylation during development.


Assuntos
Histona Acetiltransferases/genética , Anormalidades Musculoesqueléticas/genética , Mutação , Anormalidades Urogenitais/genética , Acetilação , Alelos , Animais , Exoma , Éxons , Feminino , Histonas/metabolismo , Humanos , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Masculino , Camundongos , Anormalidades Musculoesqueléticas/enzimologia , Análise de Sequência de DNA/métodos , Anormalidades Urogenitais/enzimologia
18.
Am J Med Genet A ; 167A(3): 461-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25604898

RESUMO

Type 2 collagen disorders encompass a diverse group of skeletal dysplasias that are commonly associated with orthopedic, ocular, and hearing problems. However, the frequency of many clinical features has never been determined. We retrospectively investigated the clinical, radiological, and genotypic data in a group of 93 patients with molecularly confirmed SEDC or a related disorder. The majority of the patients (80/93) had short stature, with radiological features of SEDC (n = 64), others having SEMD (n = 5), Kniest dysplasia (n = 7), spondyloperipheral dysplasia (n = 2), or Torrance-like dysplasia (n = 2). The remaining 13 patients had normal stature with mild SED, Stickler-like syndrome or multiple epiphyseal dysplasia. Over 50% of the patients had undergone orthopedic surgery, usually for scoliosis, femoral osteotomy or hip replacement. Odontoid hypoplasia was present in 56% (95% CI 38-74) and a correlation between odontoid hypoplasia and short stature was observed. Atlanto-axial instability, was observed in 5 of the 18 patients (28%, 95% CI 10-54) in whom flexion-extension films of the cervical spine were available; however, it was rarely accompanied by myelopathy. Myopia was found in 45% (95% CI 35-56), and retinal detachment had occurred in 12% (95% CI 6-21; median age 14 years; youngest age 3.5 years). Thirty-two patients complained of hearing loss (37%, 95% CI 27-48) of whom 17 required hearing aids. The ophthalmological features and possibly also hearing loss are often relatively frequent and severe in patients with splicing mutations. Based on clinical findings, age at onset and genotype-phenotype correlations in this cohort, we propose guidelines for the management and follow-up in this group of disorders.


Assuntos
Colágeno Tipo II/genética , Mutação , Osteocondrodisplasias/congênito , Fenótipo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Radiografia , Adulto Jovem
19.
Hum Genet ; 133(8): 997-1009, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24728844

RESUMO

Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome.


Assuntos
Anormalidades Múltiplas/genética , Biomarcadores/metabolismo , Síndrome CHARGE/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação/genética , Animais , Western Blotting , Síndrome CHARGE/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Knockout , Crista Neural , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
20.
Am J Med Genet A ; 164A(7): 1627-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24677454

RESUMO

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that is the most frequent monogenic cause of end-stage renal disease in children. Infantile NPHP, often in combination with other features like situs inversus, are commonly caused by mutations in the INVS gene. INVS encodes the ciliary protein inversin, and mutations induce dysfunction of the primary cilia. In this article, we present a family with two severely affected fetuses that were aborted after discovery of grossly enlarged cystic kidneys by ultrasonography before 22 weeks gestation. Exome sequencing showed that the fetuses were homozygous for a previously unreported nonsense mutation, resulting in a truncation in the IQ1 domain of inversin. This mutation induces nonsense-mediated RNA decay, as suggested by a reduced RNA level in fibroblasts derived from the fetus. However, a significant amount of mutant INVS RNA was present in these fibroblasts, yielding mutant inversin protein that was mislocalized. In control fibroblasts, inversin was present in the ciliary axoneme as well as at the basal body, whereas in the fibroblasts from the fetus, inversin could only be detected at the basal body. The phenotype of both fetuses is partly characteristic of infantile NPHP and Potter sequence. We also identified that the fetuses had mild skeletal abnormalities, including shortening and bowing of long bones, which may expand the phenotypic spectrum associated with INVS mutations.


Assuntos
Homozigoto , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Fatores de Transcrição/genética , Feto Abortado/patologia , Hibridização Genômica Comparativa , Exoma , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA