Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 139(11): 1910-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22513369

RESUMO

The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of Sim2 (single-minded 2) in limb embryonic myogenesis. Sim2 is a bHLH-PAS transcription factor that inhibits transcription by active repression and displays enhanced expression in ventral limb muscle masses during chick and mouse embryonic myogenesis. We have demonstrated that Sim2 is expressed in muscle progenitors that have not entered the myogenic program, in different experimental conditions. MyoD expression is transiently upregulated in limb muscle masses of Sim2(-/-) mice. Conversely, Sim2 gain-of-function experiments in chick and Xenopus embryos showed that Sim2 represses MyoD expression. In addition, we show that Sim2 represses the activity of the mouse MyoD promoter in primary myoblasts and is recruited to the MyoD core enhancer in embryonic mouse limbs. Sim2 expression is non-autonomously and negatively regulated by the dorsalising factor Lmx1b. We propose that Sim2 represses MyoD transcription in limb muscle masses, through Sim2 recruitment to the MyoD core enhancer, in order to prevent premature entry into the myogenic program. This MyoD repression is predominant in ventral limb regions and is likely to contribute to the differential increase of the global mass of ventral muscles versus dorsal muscles.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Desenvolvimento Muscular/fisiologia , Proteína MyoD/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Embrião de Galinha , Imunoprecipitação da Cromatina , Eletroporação , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Somitos/embriologia , Somitos/metabolismo , Células-Tronco/metabolismo , Xenopus
2.
J Biol Chem ; 286(7): 5855-67, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21173153

RESUMO

The molecules involved in vertebrate tendon formation during development remain largely unknown. To date, only two DNA-binding proteins have been identified as being involved in vertebrate tendon formation, the basic helix-loop-helix transcription factor Scleraxis and, recently, the Mohawk homeobox gene. We investigated the involvement of the early growth response transcription factors Egr1 and Egr2 in vertebrate tendon formation. We established that Egr1 and Egr2 expression in tendon cells was correlated with the increase of collagen expression during tendon cell differentiation in embryonic limbs. Vertebrate tendon differentiation relies on a muscle-derived FGF (fibroblast growth factor) signal. FGF4 was able to activate the expression of Egr genes and that of the tendon-associated collagens in chick limbs. Egr gene misexpression experiments using the chick model allowed us to establish that either Egr gene has the ability to induce de novo expression of the reference tendon marker scleraxis, the main tendon collagen Col1a1, and other tendon-associated collagens Col3a1, Col5a1, Col12a1, and Col14a1. Mouse mutants for Egr1 or Egr2 displayed reduced amounts of Col1a1 transcripts and a decrease in the number of collagen fibrils in embryonic tendons. Moreover, EGR1 and EGR2 trans-activated the mouse Col1a1 proximal promoter and were recruited to the tendon regulatory regions of this promoter. These results identify EGRs as novel DNA-binding proteins involved in vertebrate tendon differentiation by regulating type I collagen production.


Assuntos
Diferenciação Celular/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Embrião de Mamíferos/embriologia , Tendões/embriologia , Animais , Proteínas Aviárias/biossíntese , Proteínas Aviárias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Embrião de Galinha , Galinhas , Colágeno/biossíntese , Colágeno/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Embrião de Mamíferos/citologia , Fator 4 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Tendões/citologia
3.
Dev Dyn ; 240(5): 1223-32, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21509896

RESUMO

Limb muscle formation is spread out over time and, consequently, muscle cells are not easy to target at any particular stages. We aimed to design a technique to study gene function in the different steps of limb muscle formation. We have associated transposon-mediated gene transfer and a tetracycline-dependent activation method with forelimb somite electroporation. In addition, we have established a new vector combining a differentiated-muscle-cell-specific promoter and the transposon system, which allows stable gene expression in limb differentiated muscle cells and not in muscle progenitors. Using these methods, we observed that conditional Fgf4 expression in muscle cells at the onset of fetal muscle differentiation and specific Fgf4 expression in differentiated muscle cells alter muscle fiber formation in chick limbs. Limb somite electroporation with these set of vectors allowing stable, conditional, and differentiated-muscle-specific expression of transgenes opens new perspectives for investigating gene function at various steps of limb muscle formation.


Assuntos
Eletroporação/métodos , Extremidades/embriologia , Músculos/citologia , Músculos/metabolismo , Transgenes/genética , Animais , Embrião de Galinha , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Somitos/citologia , Somitos/metabolismo , Transposases/genética , Transposases/metabolismo
4.
Dev Cell ; 42(5): 527-541.e4, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28867488

RESUMO

Skeletal muscle contraction is mediated by myofibrils, complex multi-molecular scaffolds structured into repeated units, the sarcomeres. Myofibril structure and function have been extensively studied, but the molecular processes regulating its formation within the differentiating muscle cell remain largely unknown. Here we show in zebrafish that genetic interference with the Quaking RNA-binding proteins disrupts the initial steps of myofibril assembly without affecting early muscle differentiation. Using RNA sequencing, we demonstrate that Quaking is required for accumulation of the muscle-specific tropomyosin-3 transcript, tpm3.12. Further functional analyses reveal that Tpm3.12 mediates Quaking control of myofibril formation. Moreover, we identified a Quaking-binding site in the 3' UTR of tpm3.12 transcript, which is required in vivo for tpm3.12 accumulation and myofibril formation. Our work uncovers a Quaking/Tpm3 pathway controlling de novo myofibril assembly. This unexpected developmental role for Tpm3 could be at the origin of muscle defects observed in human congenital myopathies associated with tpm3 mutation.


Assuntos
Miofibrilas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Tropomiosina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Miosinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcômeros/metabolismo , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
5.
Mech Dev ; 127(1-2): 120-36, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19833199

RESUMO

The co-factor Vestigial-like 2 (Vgl-2), in association with the Scalloped/Tef/Tead transcription factors, has been identified as a component of the myogenic program in the C2C12 cell line. In order to understand Vgl-2 function in embryonic muscle formation, we analysed Vgl-2 expression and regulation during chick embryonic development. Vgl-2 expression was associated with all known sites of skeletal muscle formation, including those in the head, trunk and limb. Vgl-2 was expressed after the myogenic factor MyoD, regardless of the site of myogenesis. Analysis of Vgl-2 regulation by Notch signalling showed that Vgl-2 expression was down-regulated by Delta1-activated Notch, similarly to the muscle differentiation genes MyoD, Myogenin,Desmin, and Mef2c, while the expression of the muscle progenitor markers such as Myf5, Six1 and FgfR4 was not modified. Moreover, we established that the Myogenic Regulatory Factors (MRFs) associated with skeletal muscle differentiation (MyoD, Myogenin and Mrf4) were sufficient to activate Vgl-2 expression, while Myf5 was not able to do so. The Vgl-2 endogenous expression, the similar regulation of Vgl-2 and that of MyoD and Myogenin by Notch signalling, and the positive regulation of Vgl-2 by these MRFs suggest that Vgl-2 acts downstream of MyoD activation and is associated with the differentiation step in embryonic skeletal myogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Embrião de Galinha , Eletroporação , Camundongos , Músculo Esquelético/embriologia , Tubo Neural/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Somitos/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA