Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Res ; 152: 165-174, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771571

RESUMO

BACKGROUND: We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. MATERIAL AND METHODS: Six hundred 14-15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. RESULTS: Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel and t,t-muconic acid were inversely associated with the alkaline comet assay. CONCLUSION: This cross-sectional study found associations between current environmental exposure to (potential) human carcinogens in 14-15-year-old Flemish adolescents and short-term (oxidative) damage to DNA. Prospective follow-up will be required to investigate whether long-term effects may occur due to complex environmental exposures.


Assuntos
Carcinógenos/metabolismo , Dano ao DNA , Exposição Ambiental , Poluentes Ambientais/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Adolescente , Bélgica , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Ensaio Cometa , Estudos Transversais , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/urina , Monitoramento Ambiental , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Feminino , Humanos , Masculino
2.
Toxicol In Vitro ; 49: 53-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29598995

RESUMO

Assessment of ocular irritation potential is an international regulatory requirement in the safety evaluation of industrial and consumer products. None in vitro ocular irritation assays are capable of fully categorizing chemicals as stand-alone. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI consortium assessed the reliability of eight in vitro test methods and computational models as well as established a tiered-testing strategy. One of the selected assays was Bovine Corneal Opacity and Permeability (BCOP). In this project, the same corneas were used for measurement of opacity using the OP-KIT, the Laser Light-Based Opacitometer (LLBO) and for histopathological analysis. The results show that the accuracy of the BCOP OP-KIT in identifying Cat 1 chemicals was 73.8% while the accuracy was 86.3% for No Cat chemicals. BCOP OP-KIT false negative results were often related to an in vivo classification driven by conjunctival effects only. For the BCOP LLBO, the accuracy in identifying Cat 1 chemicals was 74.4% versus 88.8% for No Cat chemicals. The BCOP LLBO seems very promising for the identification of No Cat liquids but less so for the identification of solids. Histopathology as an additional endpoint to the BCOP test method does not reduce the false negative rate substantially for in vivo Cat 1 chemicals.

3.
Toxicol In Vitro ; 44: 122-133, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28673559

RESUMO

Assessment of ocular irritation potential is an international regulatory requirement in the safety evaluation of industrial and consumer products. None in vitro ocular irritation assays are capable of fully categorizing chemicals as stand-alone. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI consortium assessed the reliability of eight in vitro test methods and computational models as well as established a tiered-testing strategy. One of the selected assays was Bovine Corneal Opacity and Permeability (BCOP). In this project, the same corneas were used for measurement of opacity using the OP-KIT, the Laser Light-Based Opacitometer (LLBO) and for histopathological analysis. The results show that the accuracy of the BCOP OP-KIT in identifying Cat 1 chemicals was 73.8% while the accuracy was 86.3% for No Cat chemicals. BCOP OP-KIT false negative results were often related to an in vivo classification driven by conjunctival effects only. For the BCOP LLBO, the accuracy in identifying Cat 1 chemicals was 74.4% versus 88.8% for No Cat chemicals. The BCOP LLBO seems very promising for the identification of No Cat liquids but less so for the identification of solids. Histopathology as an additional endpoint to the BCOP test method does not reduce the false negative rate substantially for in vivo Cat 1 chemicals.


Assuntos
Alternativas aos Testes com Animais , Opacidade da Córnea/induzido quimicamente , Olho/efeitos dos fármacos , Irritantes/classificação , Irritantes/toxicidade , Permeabilidade/efeitos dos fármacos , Animais , Bovinos , Olho/metabolismo , Rotulagem de Produtos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA