Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 140(11): 1305-1321, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820057

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective treatment for selected patients with acute myeloid leukemia (AML) and relies on a "graft-versus-leukemia" effect (GVL) where donor T lymphocytes mediate control of malignant cell growth. However, relapse remains the major cause of death after allo-HSCT. In various malignancies, several immunoregulatory mechanisms have been shown to restrain antitumor immunity, including ligand-mediated engagement of inhibitory receptors (IRs) on effector cells, and induction of immunosuppressive cell subsets, such as regulatory T cells (Tregs) or myeloid-derived suppressor cells (MDSCs). Relapse after HSCT remains a major therapeutic challenge, but immunoregulatory mechanisms involved in restraining the GVL effect must be better deciphered in humans. We used mass cytometry to comprehensively characterize circulating leukocytes in 2 cohorts of patients after allo-HSCT. We first longitudinally assessed various immunoregulatory parameters highlighting specific trends, such as opposite dynamics between MDSCs and Tregs. More generally, the immune landscape was stable from months 3 to 6, whereas many variations occurred from months 6 to 12 after HSCT. Comparison with healthy individuals revealed that profound alterations in the immune equilibrium persisted 1 year after HSCT. Importantly, we found that high levels of TIGIT and CD161 expression on CD4 T cells at month 3 after HSCT were distinct features significantly associated with subsequent AML relapse in a second cross-sectional cohort. Altogether, these data provide global insights into the reconstitution of the immunoregulatory landscape after HSCT and highlight non-canonical IRs associated with relapse, which could open the path to new prognostic tools or therapeutic targets to restore subverted anti-AML immunity.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Linfócitos T CD4-Positivos/patologia , Estudos Transversais , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Ligantes , Receptores Imunológicos , Recidiva , Transplante Homólogo
2.
Circ Res ; 124(6): 846-855, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30636542

RESUMO

RATIONALE: Although many familial cases of pulmonary arterial hypertension exhibit an autosomal dominant mode of inheritance with the majority having mutations in essential constituents of the BMP (bone morphogenetic protein) signaling, the specific contribution of the long-term loss of signal transduction triggered by the BMPR2 (type 2 BMP receptor) remains poorly characterized. OBJECTIVE: To investigate the role of BMP9, the main ligand of ALK1 (Activin receptor-like kinase 1)/BMPR2 heterocomplexes, in pulmonary hypertension. METHOD AND RESULTS: The absence of BMP9 in Bmp9-/- mice and its inhibition in C57BL/6 mice using neutralizing anti-BMP9 antibodies substantially prevent against chronic hypoxia-induced pulmonary hypertension judged by right ventricular systolic pressure measurement, right ventricular hypertrophy, and pulmonary distal arterial muscularization. In agreement with these observations, we found that the BMP9/BMP10 ligand trap ALK1ECD administered in monocrotaline or Sugen/hypoxia (SuHx) rats substantially attenuate proliferation of pulmonary vascular cells, inflammatory cell infiltration, and regresses established pulmonary hypertension in rats. Our data obtained in human pulmonary endothelial cells derived from controls and pulmonary arterial hypertension patients indicate that BMP9 can affect the balance between endothelin-1, apelin, and adrenomedullin. We reproduced these in vitro observations in mice chronically exposed to hypoxia, with Bmp9-/- mice exhibiting lower mRNA levels of the vasoconstrictor peptide ET-1 (endothelin-1) and higher levels of the 2 potent vasodilator factors apelin and ADM (adrenomedullin) compared with Bmp9+/+ littermates. CONCLUSIONS: Taken together, our data indicate that the loss of BMP9, by deletion or inhibition, has beneficial effects against pulmonary hypertension onset and progression.


Assuntos
Fator 2 de Diferenciação de Crescimento/antagonistas & inibidores , Hipertensão Pulmonar/prevenção & controle , Receptores de Activinas Tipo II/farmacologia , Animais , Células Cultivadas , Endotelina-1/genética , Fator 2 de Diferenciação de Crescimento/fisiologia , Humanos , Hipóxia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
3.
Arterioscler Thromb Vasc Biol ; 40(3): 766-782, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31969018

RESUMO

OBJECTIVE: Excessive accumulation of resident cells within the pulmonary vascular wall represents the hallmark feature of the remodeling occurring in pulmonary arterial hypertension (PAH). Furthermore, we have previously demonstrated that pulmonary arterioles are excessively covered by pericytes in PAH, but this process is not fully understood. The aim of our study was to investigate the dynamic contribution of pericytes in PAH vascular remodeling. Approach and Results: In this study, we performed in situ, in vivo, and in vitro experiments. We isolated primary cultures of human pericytes from controls and PAH lung specimens then performed functional studies (cell migration, proliferation, and differentiation). In addition, to follow up pericyte number and fate, a genetic fate-mapping approach was used with an NG2CreER;mT/mG transgenic mice in a model of pulmonary arteriole muscularization occurring during chronic hypoxia. We identified phenotypic and functional abnormalities of PAH pericytes in vitro, as they overexpress CXCR (C-X-C motif chemokine receptor)-7 and TGF (transforming growth factor)-ßRII and, thereby, display a higher capacity to migrate, proliferate, and differentiate into smooth muscle-like cells than controls. In an in vivo model of chronic hypoxia, we found an early increase in pericyte number in a CXCL (C-X-C motif chemokine ligand)-12-dependent manner whereas later, from day 7, activation of the canonical TGF-ß signaling pathway induces pericytes to differentiate into smooth muscle-like cells. CONCLUSIONS: Our findings reveal a pivotal role of pulmonary pericytes in PAH and identify CXCR-7 and TGF-ßRII as 2 intrinsic abnormalities in these resident progenitor vascular cells that foster the onset and maintenance of PAH structural changes in blood lung vessels.


Assuntos
Linhagem da Célula , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Remodelação Vascular , Animais , Estudos de Casos e Controles , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Masculino , Camundongos Transgênicos , Pericitos/metabolismo , Pericitos/patologia , Artéria Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Fatores de Tempo
4.
FASEB J ; 33(3): 3670-3679, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30481487

RESUMO

Heightened pulmonary artery smooth muscle cell (PA-SMC) proliferation and migration and dynamic remodeling of the extracellular matrix are hallmark pathogenic features of pulmonary arterial hypertension (PAH). Pirfenidone (PFD) is an orally bioavailable pyridone derivative with antifibrotic, antiinflammatory, and antioxidative properties currently used in the treatment of idiopathic pulmonary fibrosis. We therefore evaluated the efficacy of curative treatments with PFD in the sugen/hypoxia (SuHx) rat model of severe pulmonary hypertension. Treatment with PFD (30 mg/kg per day by mouth 3 times a day for 3 wk) started 5 wk after sugen injection partially reversed established pulmonary hypertension, reducing total pulmonary vascular resistance and remodeling. Consistent with these observations, we found that continued PFD treatment decreases PA-SMC proliferation and levels of extracellular matrix deposition in lungs and right ventricles in SuHx rats. Importantly, PFD attenuated the proproliferative and promigratory potentials of cultured PA-SMCs from patients with idiopathic PAH and their capacity to produce extracellular matrix components. Finally, we found that PFD dose dependently enhanced forkhead box O1 protein levels and its nuclear translocation in cultured idiopathic PAH PA-SMCs and in PFD-treated SuHx rats. PFD appears to be a potential therapy for PAH worthy of investigation and evaluation for clinical use in conjunction with current PAH treatments.-Poble, P.-B., Phan, C., Quatremare, T., Bordenave, J., Thuillet, R., Cumont, A., Huertas, A., Tu, L., Dorfmüller, P., Humbert, M., Ghigna, M.-R., Savale, L., Guignabert, C. Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/fisiopatologia , Piridonas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Remodelação Vascular/efeitos dos fármacos
5.
Int J Mol Sci ; 19(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567353

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication of idiopathic pulmonary fibrosis (IPF) that significantly contributes to morbidity and mortality. Macrophage migration inhibitory factor (MIF) is a critical factor in vascular remodeling of the pulmonary circulation. OBJECTIVES: We tested the effects of two small molecules targeting MIF on bleomycin (BLM)-induced collagen deposition, PH, and vascular remodeling in mouse lungs. METHODS: We examined the distribution pattern of MIF, CD74, and CXCR4 in the lungs of patients with IPF-PH and the lungs of BLM-injected mice. Then, treatments were realized with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) and N-(3-hydroxy-4-fluorobenzyl)-5 trifluoromethylbenzoxazol-2-thione 31 (20 mg/kg/day per os for 3 weeks) started 24 h after an intratracheal BLM administration. RESULTS: More intense immunoreactivity was noted for MIF, CD74, and CXCR4 in lungs from IPF-PH patients and BLM-injected mice. Furthermore, we found that treatments of BLM-injected mice with ISO-1 or compound 31 attenuated lung collagen deposition and right ventricular systolic pressure increase. Additionally, reduced pulmonary inflammatory infiltration and pulmonary arterial muscularization were observed in the lungs of BLM-injected mice treated with ISO-1 or compound 31. CONCLUSIONS: Treatments with ISO-1 or compound 31 attenuates BLM-induced inflammation and fibrosis in lung, and prevents PH development in mice, suggesting that MIF is an important factor for IPF-PH development.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Inflamação/tratamento farmacológico , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Bleomicina/toxicidade , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Isoxazóis/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Receptores CXCR4/genética , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética
6.
Cardiovasc Res ; 116(3): 686-697, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173066

RESUMO

AIMS: The progressive accumulation of cells in pulmonary vascular walls is a key pathological feature of pulmonary arterial hypertension (PAH) that results in narrowing of the vessel lumen, but treatments targeting this mechanism are lacking. The C-X-C motif chemokine 12 (CXCL12) appears to be crucial in these processes. We investigated the activity of two CXCL12 neutraligands on experimental pulmonary hypertension (PH), using two complementary animal models. METHODS AND RESULTS: Male Wistar rats were injected with monocrotaline (MCT) or were subjected to SU5416 followed by 3-week hypoxia to induce severe PH. After PH establishment, assessed by pulsed-wave Doppler echocardiography, MCT-injected or SU5416 plus chronic hypoxia (SuHx) rats were randomized to receive CXCL12 neutraligands chalcone 4 or LIT-927 (100 mg/kg/day), the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100 (5 mg/kg/day), or vehicle, for 2 or 3 weeks, respectively. At the end of these treatment periods, echocardiographic and haemodynamic measurements were performed and tissue samples were collected for protein expression and histological analysis. Daily treatment of MCT-injected or SuHx rats with established PH with chalcone 4 or LIT-927 partially reversed established PH, reducing total pulmonary vascular resistance, and remodelling of pulmonary arterioles. Consistent with these observations, we found that neutralization of CXCL12 attenuates right ventricular hypertrophy, pulmonary vascular remodelling, and decreases pulmonary artery smooth muscle cell (PA-SMC) proliferation in lungs of MCT-injected rats and SuHx rats. Importantly, CXCL12 neutralization with either chalcone 4 or LIT-927 inhibited the migration of PA-SMCs and pericytes in vitro with a better efficacy than AMD3100. Finally, we found that CXCL12 neutralization decreases vascular pericyte coverage and macrophage infiltration in lungs of both MCT-injected and SuHx rats. CONCLUSION: We report here a greater beneficial effect of CXCL12 neutralization vs. the conventional CXCR4 blockade with AMD3100 in the MCT and SuHx rat models of severe PH, supporting a role for CXCL12 in the progression of vascular complications in PH and opening to new therapeutic options.


Assuntos
Chalconas/farmacologia , Quimiocina CXCL2/antagonistas & inibidores , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Pirimidinonas/farmacologia , Remodelação Vascular/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Animais , Benzilaminas , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL2/metabolismo , Ciclamos , Modelos Animais de Doenças , Compostos Heterocíclicos/farmacologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transdução de Sinais
7.
Biol Aujourdhui ; 210(2): 65-78, 2016.
Artigo em Francês | MEDLINE | ID: mdl-27687598

RESUMO

Pulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure (mPAP), resulting in a progressive functional decline despite current available therapeutic options. There are multiple mechanisms predisposing to and/or promoting the aberrant pulmonary vascular remodeling in PAH, and these involve not only altered crosstalk between cells within the vascular wall but also sustained inflammation and dysimmunity, cell accumulation in the vascular wall and excessive activation of some growth factor-stimulated signaling pathways, in addition to the interaction of systemic hormones, local growth factors, cytokines, and transcription factors. Heterozygous germline mutations in the bone morphogenetic protein receptor, type-2 (BMPR2) gene, a gene encoding a receptor for the transforming growth factor (TGF)-ß superfamily, can predispose to the disease. Although the spectrum of therapeutic options for PAH has expanded in the last 20 years, available therapies remain essentially palliative. Over the past decade, however, a better understanding of key regulators of this irreversible remodeling of the pulmonary vasculature has been obtained. New and more effective approaches are likely to emerge. The present article profiles the innovative research into novel pathways and therapeutic targets that may lead to the development of targeted agents in PAH.


Assuntos
Comunicação Celular/fisiologia , Hipertensão Pulmonar/terapia , Terapia de Alvo Molecular/tendências , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Humanos , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Transdução de Sinais/fisiologia
8.
Chest ; 149(6): 1482-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26836928

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) encompasses a group of conditions with distinct causes. Immunologic disorders are common features of all forms of PAH and contributes to both disease susceptibility and progression. Regulatory T lymphocytes (Treg) are dysfunctional in patients with idiopathic PAH (iPAH) in a leptin-dependent manner. However, it is not known whether these abnormalities are specific to iPAH. Hence, we hypothesized that (1) Treg dysfunction is also present in heritable (hPAH) and connective tissue disease-associated PAH (CTD-PAH); (2) defective leptin-dependent signaling is present in hPAH and CTD-PAH and could contribute to Treg dysfunction; (3) modulating the leptin axis in vivo could protect against Treg dysfunction; and (4) restoration of Treg activity could limit or reverse experimental chronic hypoxia-induced pulmonary hypertension in vivo. METHODS: We analyzed 62 patients with PAH (30 with iPAH, 18 with hPAH, and 14 with CTD-PAH), 7 patients with CTD without PAH, and 20 healthy control subjects. RESULTS: Our results indicate that Treg are dysfunctional in all PAH forms tested, as well as in patients with CTD without PAH. Importantly, the leptin axis is crucial in Treg dysfunction in patients with iPAH and those with CTD (with or without PAH), whereas in patients with hPAH, Treg are altered in a leptin-independent manner. We found that leptin receptor-deficient rats, which develop less severe hypoxia-induced pulmonary hypertension, are protected against decreased Treg function after hypoxic exposure. CONCLUSIONS: Taken together, our results suggest that Treg dysfunction is common to all forms of PAH and may contribute to the development and the progression of the disease.


Assuntos
Doenças do Tecido Conjuntivo , Hipertensão Pulmonar Primária Familiar , Hipóxia , Leptina/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Doenças do Tecido Conjuntivo/complicações , Doenças do Tecido Conjuntivo/imunologia , Doenças do Tecido Conjuntivo/patologia , Progressão da Doença , Hipertensão Pulmonar Primária Familiar/etiologia , Hipertensão Pulmonar Primária Familiar/imunologia , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Feminino , Humanos , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA