Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 48(5): 1046-1059.e6, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752063

RESUMO

To obtain a molecular definition of regulatory T (Treg) cell identity, we performed proteomics and transcriptomics on various populations of human regulatory and conventional CD4+ T (Tconv) cells. A protein expression signature was identified that defines all Treg cells, and another signature that defines effector Treg cells. These signatures could not be extrapolated from transcriptome data. Unique cell-biological and metabolic features in Treg cells were defined, as well as specific adaptations in cytokine, TCR, and costimulatory receptor signaling pathways. One such adaptation-selective STAT4 deficiency-prevented destabilization of Treg cell identity and function by inflammatory cytokines, while these signals could still induce critical transcription factors and homing receptors via other pathways. Furthermore, our study revealed surface markers that identify FOXP3+CD4+ T cells with distinct functional properties. Our findings suggest that adaptation in signaling pathways protect Treg cell identity and present a resource for further research into Treg cell biology.


Assuntos
Adaptação Fisiológica , Proteômica/métodos , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Immunity ; 47(5): 848-861.e5, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29126798

RESUMO

CD4+ T cells optimize the cytotoxic T cell (CTL) response in magnitude and quality, by unknown molecular mechanisms. We here present the transcriptomic changes in CTLs resulting from CD4+ T cell help after anti-cancer vaccination or virus infection. The gene expression signatures revealed that CD4+ T cell help during priming optimized CTLs in expression of cytotoxic effector molecules and many other functions that ensured efficacy of CTLs throughout their life cycle. Key features included downregulation of PD-1 and other coinhibitory receptors that impede CTL activity, and increased motility and migration capacities. "Helped" CTLs acquired chemokine receptors that helped them reach their tumor target tissue and metalloprotease activity that enabled them to invade into tumor tissue. A very large part of the "help" program was instilled in CD8+ T cells via CD27 costimulation. The help program thus enhances specific CTL effector functions in response to vaccination or a virus infection.


Assuntos
Ligante CD27/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T Citotóxicos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/fisiologia , Diferenciação Celular , Movimento Celular , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR4/fisiologia
3.
Trends Immunol ; 41(6): 493-511, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32381382

RESUMO

Cancer immunotherapy has proven remarkably successful through instigation of systemic antitumor T cell responses. Despite this achievement, further advancements are needed to expand the scope of susceptible cancer types and overcome variation in treatment outcomes between patients. Small-molecule drugs targeting defined pathways and/or cells capable of immune modulation are expected to substantially improve efficacy of cancer immunotherapy. Small-molecule drugs possess unique properties compatible with systemic administration and amenable to both extracellular and intracellular targets. These compounds can modify molecular pathways to overcome immune tolerance and suppression towards effective antitumor responses. Here, we provide an overview of how such effects might be achieved by combining immunotherapy with conventional and/or new small-molecule chemotherapeutics.


Assuntos
Imunoterapia , Neoplasias , Bibliotecas de Moléculas Pequenas , Antineoplásicos/uso terapêutico , Humanos , Tolerância Imunológica , Neoplasias/terapia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Linfócitos T/imunologia
4.
Nature ; 549(7670): 106-110, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813410

RESUMO

The clinical benefit for patients with diverse types of metastatic cancers that has been observed upon blockade of the interaction between PD-1 and PD-L1 has highlighted the importance of this inhibitory axis in the suppression of tumour-specific T-cell responses. Notwithstanding the key role of PD-L1 expression by cells within the tumour micro-environment, our understanding of the regulation of the PD-L1 protein is limited. Here we identify, using a haploid genetic screen, CMTM6, a type-3 transmembrane protein of previously unknown function, as a regulator of the PD-L1 protein. Interference with CMTM6 expression results in impaired PD-L1 protein expression in all human tumour cell types tested and in primary human dendritic cells. Furthermore, through both a haploid genetic modifier screen in CMTM6-deficient cells and genetic complementation experiments, we demonstrate that this function is shared by its closest family member, CMTM4, but not by any of the other CMTM members tested. Notably, CMTM6 increases the PD-L1 protein pool without affecting PD-L1 (also known as CD274) transcription levels. Rather, we demonstrate that CMTM6 is present at the cell surface, associates with the PD-L1 protein, reduces its ubiquitination and increases PD-L1 protein half-life. Consistent with its role in PD-L1 protein regulation, CMTM6 enhances the ability of PD-L1-expressing tumour cells to inhibit T cells. Collectively, our data reveal that PD-L1 relies on CMTM6/4 to efficiently carry out its inhibitory function, and suggest potential new avenues to block this pathway.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Teste de Complementação Genética , Haploidia , Humanos , Proteínas com Domínio MARVEL/genética , Melanoma/genética , Melanoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Ubiquitinação
5.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32764145

RESUMO

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/genética , Epigênese Genética/genética , Epigenômica , Feminino , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Masculino , Metiltransferases/metabolismo , Camundongos
6.
Eur J Immunol ; 51(8): 1911-1920, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34106465

RESUMO

Immunotherapy targeting the Programmed Death (PD-1) receptor/ligand (L) "checkpoint" rapidly gains ground in the treatment of many cancer types. To increase treatment scope and efficacy, predictive biomarkers and rational selection of co-treatments are required. To meet these demands, we must understand PD-1 function in detail. We here outline recent insights into the regulation of the CD8+ T cell response by PD-1. The prevailing view has been that blockade of PD-1/ligand (L) interaction "reinvigorates" cytotoxic T lymphocytes (CTL) that were rendered dysfunctional in the tumor microenvironment (TME). However, this review stresses that tumors continuously communicate with adjacent draining lymph nodes (LNs) and that the PD-1 checkpoint also operates during T cell priming. We clarify the role of the PD-(L)1 system at the T cell/DC interface, where it regulates T cell receptor (TCR) signaling and CD28 costimulation and thus controls activation of tumor-specific T cells. We also highlight the importance of CD4+ T cell help during priming, which allows DCs to provide other costimulatory and cytokine signals required for optimal CTL differentiation and likely avoidance of a dysfunctional state. Therefore, we pose that PD-(L)1 blockade should exploit LN function and be combined with "help" signals to optimize CTL efficacy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD4-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T Citotóxicos/imunologia
7.
Blood ; 136(19): 2188-2199, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32750121

RESUMO

Langerhans cell histiocytosis (LCH) is a myeloid neoplasia, driven by sporadic activating mutations in the MAPK pathway. The misguided myeloid dendritic cell (DC) model proposes that high-risk, multisystem, risk-organ-positive (MS-RO+) LCH results from driver mutation in a bone marrow (BM)-resident multipotent hematopoietic progenitor, while low-risk, MS-RO- and single-system LCH would result from driver mutation in a circulating or tissue-resident, DC-committed precursor. We have examined the CD34+c-Kit+Flt3+ myeloid progenitor population as potential mutation carrier in all LCH disease manifestations. This population contains oligopotent progenitors of monocytes (Mo's)/macrophages (MΦs), osteoclasts (OCs), and DCs. CD34+c-Kit+Flt3+ cells from BM of MS-RO+ LCH patients produced Langerhans cell (LC)-like cells in vitro. Both LC-like and DC offspring from this progenitor carried the BRAF mutation, confirming their common origin. In both high- and low-risk LCH patients, CD34+c-Kit+Flt3+ progenitor frequency in blood was higher than in healthy donors. In one MS-RO+ LCH patient, CD34+c-Kit+Flt3+ cell frequency in blood and its BRAF-mutated offspring reported response to chemotherapy. CD34+c-Kit+Flt3+ progenitors from blood of both high- and low-risk LCH patients gave rise to DCs and LC-like cells in vitro, but the driver mutation was not easily detectable, likely due to low frequency of mutated progenitors. Mutant BRAF alleles were found in Mo's /MΦs, DCs, LC-like cells, and/or OC-like cells in lesions and/or Mo and DCs in blood of multiple low-risk patients. We therefore hypothesize that in both high- and low-risk LCH, the driver mutation is present in a BM-resident myeloid progenitor that can be mobilized to the blood.


Assuntos
Medula Óssea/patologia , Diferenciação Celular , Células Dendríticas/patologia , Histiocitose de Células de Langerhans/patologia , Mutação , Células Progenitoras Mieloides/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/metabolismo , Humanos , Células Progenitoras Mieloides/metabolismo
8.
Blood ; 136(25): 2918-2926, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32603412

RESUMO

Chronic lymphocytic leukemia (CLL) cells cycle between lymph node (LN) and peripheral blood (PB) and display major shifts in Bcl-2 family members between those compartments. Specifically, Bcl-XL and Mcl-1, which are not targeted by the Bcl-2 inhibitor venetoclax, are increased in the LN. Because ibrutinib forces CLL cells out of the LN, we hypothesized that ibrutinib may thereby affect expression of Bcl-XL and Mcl-1 and sensitize CLL cells to venetoclax. We investigated expression of Bcl-2 family members in patients under ibrutinib or venetoclax treatment, combined with dissecting functional interactions of Bcl-2 family members, in an in vitro model of venetoclax resistance. In the PB, recent LN emigrants had higher Bcl-XL and Mcl-1 expression than did cells immigrating back to the LN. Under ibrutinib treatment, this distinction collapsed; significantly, the pretreatment profile reappeared in patients who relapsed on ibrutinib. However, in response to venetoclax, Bcl-2 members displayed an early increase, underlining the different modes of action of these 2 drugs. Profiling by BH3 mimetics was performed in CLL cells fully resistant to venetoclax due to CD40-mediated induction of Bcl-XL, Mcl-1, and Bfl-1. Several dual or triple combinations of BH3 mimetics were highly synergistic in restoring killing of CLL cells. Lastly, we demonstrated that proapoptotic Bim interacts with antiapoptotic Bcl-2 members in a sequential manner: Bcl-2 > Bcl-XL > Mcl-1 > Bfl-1. Combined, the data indicate that Bcl-XL is more important in venetoclax resistance than is Mcl-1 and provide biological rationale for potential synergy between ibrutinib and venetoclax.


Assuntos
Adenina/análogos & derivados , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B , Piperidinas/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Sulfonamidas/administração & dosagem , Adenina/administração & dosagem , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
9.
Immunity ; 38(1): 53-65, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23159439

RESUMO

T helper 17 (Th17) cells protect against infection but also promote inflammation and autoimmunity. Therefore, the factors that govern Th17 cell differentiation are of special interest. The CD27 and CD70 costimulatory pathway impeded Th17 effector cell differentiation and associated autoimmunity in a mouse model of multiple sclerosis. CD27 or CD70 deficiency exacerbated disease, whereas constitutive CD27 signaling strongly reduced disease incidence and severity. CD27 signaling did not impact master regulators of T helper cell lineage commitment but selectively repressed transcription of the key effector molecules interleukin-17 (IL-17) and the chemokine receptor CCR6 in differentiating Th17 cells. CD27 mediated this repression at least in part via the c-Jun N-terminal kinase (JNK) pathway that restrained IL-17 and CCR6 expression in differentiating Th17 cells. CD27 signaling also resulted in epigenetic silencing of the Il17a gene. Thus, CD27 costimulation via JNK signaling, transcriptional, and epigenetic effects suppresses Th17 effector cell function and associated pathological consequences.


Assuntos
Autoimunidade/imunologia , Ligante CD27/metabolismo , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Autoimunidade/genética , Ligante CD27/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores CCR6/genética , Receptores CCR6/metabolismo , Células Th17/citologia
10.
J Immunol ; 204(8): 2110-2121, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169846

RESUMO

Type I IFN is produced upon infection and tissue damage and induces the expression of many IFN-stimulated genes (ISGs) that encode host-protective proteins. ISG15 is a ubiquitin-like molecule that can be conjugated to proteins but is also released from cells in a free form. Free, extracellular ISG15 is suggested to have an immune-regulatory role, based on disease phenotypes of ISG15-deficient humans and mice. However, the underlying mechanisms by which free ISG15 would act as a "cytokine" are unclear and much debated. We, in this study, demonstrate in a clinically relevant mouse model of therapeutic vaccination that free ISG15 is an alarmin that induces tissue alert, characterized by extracellular matrix remodeling, myeloid cell infiltration, and inflammation. Moreover, free ISG15 is a potent adjuvant for the CTL response. ISG15 produced at the vaccination site promoted the vaccine-specific CTL response by enhancing expansion, short-lived effector and effector/memory differentiation of CD8+ T cells. The function of free ISG15 as an extracellular ligand was demonstrated, because the equivalents in murine ISG15 of 2 aa recently implicated in binding of human ISG15 to LFA-1 in vitro were required for its adjuvant effect in vivo. Moreover, in further agreement with the in vitro findings on human cells, free ISG15 boosted the CTL response in vivo via NK cells in the absence of CD4+ T cell help. Thus, free ISG15 is part of a newly recognized innate route to promote the CTL response.


Assuntos
Citocinas/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T Citotóxicos/imunologia , Adjuvantes Imunológicos , Animais , Linhagem Celular , Citocinas/deficiência , Citocinas/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitinas/deficiência , Ubiquitinas/genética , Ubiquitinas/imunologia
11.
J Immunol ; 204(12): 3139-3148, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32366581

RESUMO

FOXP3-expressing regulatory T (Treg) cells safeguard immunological tolerance. Treg cells can be generated during thymic development (called thymic Treg [tTreg] cells) or derived from mature conventional CD4+ T cells that underwent TGF-ß-mediated conversion in the periphery (called peripheral Treg [pTreg] cells). Murine studies have shown that tTreg cells exhibit strong lineage fidelity, whereas pTreg cells can revert into conventional CD4+ T cells. Their stronger lineage commitment makes tTreg cells the safest cells to use in adoptive cell therapy, increasingly used to treat autoimmune and inflammatory disorders. Markers to distinguish human tTreg cells from pTreg cells have, however, not been found. Based on combined proteomic and transcriptomic approaches, we report that the Ig superfamily protein GPA33 is expressed on a subset of human Treg cells. GPA33 is acquired late during tTreg cell development but is not expressed on TGF-ß-induced Treg cells. GPA33 identifies Treg cells in human blood that lack the ability to produce effector cytokines (IL-2, IFN-γ, IL-17), regardless of differentiation stage. GPA33high Treg cells universally express the transcription factor Helios that preferentially marks tTreg cells and can robustly and stably be expanded in vitro even without rapamycin. Expanded GPA33high Treg cells are suppressive, unable to produce proinflammatory cytokines, and exhibit the epigenetic modifications of the FOXP3 gene enhancer CNS2, necessary for indelible expression of this critical transcription factor. Our findings thus suggest that GPA33 identifies human tTreg cells and provide a strategy to isolate such cells for safer and more efficacious adoptive cell therapy.


Assuntos
Biomarcadores/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Ativação Linfocitária/imunologia , Fator de Crescimento Transformador beta/metabolismo
12.
Cancer Immunol Immunother ; 70(11): 3167-3181, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33796917

RESUMO

Allogeneic stem cell transplantation (alloSCT), following induction chemotherapy, can be curative for hemato-oncology patients due to powerful graft-versus-tumor immunity. However, disease recurrence remains the major cause of treatment failure, emphasizing the need for potent adjuvant immunotherapy. In this regard, dendritic cell (DC) vaccination is highly attractive, as DCs are the key orchestrators of innate and adaptive immunity. Natural DC subsets are postulated to be more powerful compared with monocyte-derived DCs, due to their unique functional properties and cross-talk capacity. Yet, obtaining sufficient numbers of natural DCs, particularly type 1 conventional DCs (cDC1s), is challenging due to low frequencies in human blood. We developed a clinically applicable culture protocol using donor-derived G-CSF mobilized CD34+ hematopoietic progenitor cells (HPCs) for simultaneous generation of high numbers of cDC1s, cDC2s and plasmacytoid DCs (pDCs). Transcriptomic analyses demonstrated that these ex vivo-generated DCs highly resemble their in vivo blood counterparts. In more detail, we demonstrated that the CD141+CLEG9A+ cDC1 subset exhibited key features of in vivo cDC1s, reflected by high expression of co-stimulatory molecules and release of IL-12p70 and TNF-α. Furthermore, cDC1s efficiently primed alloreactive T cells, potently cross-presented long-peptides and boosted expansion of minor histocompatibility antigen-experienced T cells. Moreover, they strongly enhanced NK cell activation, degranulation and anti-leukemic reactivity. Together, we developed a robust culture protocol to generate highly functional blood DC subsets for in vivo application as tailored adjuvant immunotherapy to boost innate and adaptive anti-tumor immunity in alloSCT patients.


Assuntos
Técnicas de Cultura de Células/métodos , Células Dendríticas/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Apresentação de Antígeno/imunologia , Antígenos CD34 , Apresentação Cruzada/imunologia , Humanos , Ativação Linfocitária/imunologia
13.
Nat Immunol ; 10(4): 427-36, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19270712

RESUMO

The production of cytokines such as interferon-gamma and interleukin 17 by alphabeta and gammadelta T cells influences the outcome of immune responses. Here we show that most gammadelta T lymphocytes expressed the tumor necrosis factor receptor family member CD27 and secreted interferon-gamma, whereas interleukin 17 production was restricted to CD27(-) gammadelta T cells. In contrast to the apparent plasticity of alphabeta T cells, the cytokine profiles of these distinct gammadelta T cell subsets were essentially stable, even during infection. These phenotypes were established during thymic development, when CD27 functions as a regulator of the differentiation of gammadelta T cells at least in part by inducing expression of the lymphotoxin-beta receptor and genes associated with trans-conditioning and interferon-gamma production. Thus, the cytokine profiles of peripheral gammadelta T cells are predetermined mainly by a mechanism involving CD27.


Assuntos
Interferon gama/imunologia , Interleucina-17/imunologia , Células Progenitoras Linfoides/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Timo/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Ligante CD27/imunologia , Células Cultivadas , Receptor beta de Linfotoxina/imunologia , Malária Cerebral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
14.
EMBO J ; 34(10): 1336-48, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25787857

RESUMO

The severity and intensity of autoimmune disease in immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) patients and in scurfy mice emphasize the critical role played by thymus-derived regulatory T cells (tTregs) in maintaining peripheral immune tolerance. However, although tTregs are critical to prevent lethal autoimmunity and excessive inflammatory responses, their suppressive mechanism remains elusive. Here, we demonstrate that tTregs selectively inhibit CD27/CD70-dependent Th1 priming, while leaving the IL-12-dependent pathway unaffected. Immunized mice depleted of tTregs showed an increased response of IFN-γ-secreting CD4(+) T cells that was strictly reliant on a functional CD27/CD70 pathway. In vitro studies revealed that tTregs downregulate CD70 from the plasma membrane of dendritic cells (DCs) in a CD27-dependent manner. CD70 downregulation required contact between Tregs and DCs and resulted in endocytosis of CD27 and CD70 into the DC. These findings reveal a novel mechanism by which tTregs can maintain tolerance or prevent excessive, proinflammatory Th1 responses.


Assuntos
Ligante CD27/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Timo/imunologia , Timo/metabolismo , Animais , Ligante CD27/genética , Células Dendríticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
15.
Immunology ; 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700809

RESUMO

Cancer immunotherapy focuses mainly on anti-tumour activity of CD8+ cytotoxic T lymphocytes (CTLs). CTLs can directly kill all tumour cell types, provided they carry recognizable antigens. However, CD4+ T cells also play important roles in anti-tumour immunity. CD4+ T cells can either suppress or promote the anti-tumour CTL response, either in secondary lymphoid organs or in the tumour. In this review, we highlight opposing mechanisms of conventional and regulatory T cells at both sites. We outline how current cancer immunotherapy strategies affect both subsets and how selective modulation of each subset is important to maximize the clinical response of cancer patients.

16.
Eur Heart J ; 38(48): 3590-3599, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29045618

RESUMO

Aims: The co-stimulatory receptor CD27 modulates responses of T cells, B cells, and NK cells. Various T cell subsets participate in atherogenesis. However, the role of CD27 in atherosclerosis remains unexplored. Methods and results: Here we investigated the effect of bone marrow-derived and systemic CD27 deficiency in Apolipoprotein E-deficient (Apoe-/-) mice in early and advanced stages of atherosclerosis. Lethally-irradiated Apoe-/- mice reconstituted with Cd27-/-Apoe-/- bone marrow and consuming an atherogenic diet displayed a markedly increased plaque size and lesional inflammation compared to mice receiving Cd27+/+Apoe-/- bone marrow. Accordingly, chow diet-fed Cd27-/-Apoe-/- mice showed exacerbated lesion development and increased inflammation at the age of 18 weeks. At a more advanced stage of atherosclerosis (28 weeks), lesion size and phenotype did not differ between the two groups. Systemic and bone marrow-derived CD27 deficiency reduced the abundance of regulatory T cells (Treg) in blood, lymphoid organs, and the aorta. Numbers of other immune cells were not affected while expression of inflammatory cytokine genes (e.g. IL-1ß and IL-6) was increased in the aorta when haematopoietic CD27 was lacking. In vitro, Tregs of CD27-deficient mice showed similar suppressive capacity compared with their wild-type controls and migrated equally towards CCL19 and CCL21. However, thymic Cd27-/- Tregs underwent increased apoptosis and expressed fewer markers of proliferation in vivo. Reconstitution of Cd27-/-Apoe-/- mice with Cd27+/+Apoe-/- Tregs reversed the increase in atherosclerosis. Conclusion: We demonstrate that CD27 co-stimulation increases the number of Tregs and limits lesion development and inflammation in experimental atherosclerosis, particularly during early stages of disease. Thus, our study suggests that promotion of CD27 function may mitigate atherosclerosis.


Assuntos
Aterosclerose/imunologia , Hiperlipidemias/complicações , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Apoptose , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia
17.
Immunity ; 29(6): 934-46, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19062317

RESUMO

Steady-state dendritic cells (DCs) maintain peripheral T cell tolerance, whereas mature DCs generate immunity. CD70 is a costimulatory ligand acquired upon DC maturation. To determine its impact on T cell fate, we have generated mice that constitutively express CD70 in conventional DCs (cDCs). In these mice, naive CD4+ and CD8+ T cells spontaneously convert into effector cells. Administration of peptide without adjuvant, which is ordinarily tolerogenic, elicited tumor-eradicating CD8+ T cell responses and robust CD4+ T cell-independent memory. CD70 was also constitutively expressed in cDCs that inducibly present viral epitopes. In this case, tolerance induction was prevented as well. The antigen-presenting DCs generated protective immunity to virus infection and broke a pre-existing state of CD8+ T cell tolerance. Thus, the sole expression of CD70 by otherwise immature cDCs sufficed to convert CD8+ T cell tolerance into immunity, defining the importance of CD27-CD70 interactions at the interface between T cell and DC.


Assuntos
Ligante CD27/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Neoplasias/imunologia , Animais , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/metabolismo , Memória Imunológica , Melanoma/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
18.
Cancer Immunol Immunother ; 65(6): 753-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27160390

RESUMO

T cell checkpoint blockade with antibodies targeting programmed cell death (ligand)-1 (PD-1/PD-L1) and/or cytotoxic T lymphocyte-antigen 4 (CTLA-4) has improved therapy outcome in melanoma patients. However, a considerable proportion of patients does not benefit even from combined α-CTLA-4 and α-PD-1 therapy. We therefore examined to which extent T cell (co)stimulation and/or stereotactic body radiation therapy (SBRT) could further enhance the therapeutic efficacy of T cell checkpoint blockade in a genetically engineered mouse melanoma model that is driven by PTEN-deficiency, and BRAFV600 mutation, as in human, but lacks the sporadic UV-induced mutations. Tumor-bearing mice were treated with different combinations of immunomodulatory antibodies (α-CTLA-4, α-PD-1, α-CD137) or interleukin-2 (IL-2) alone or in combination with SBRT. None of our immunotherapeutic approaches (alone or in combination) had any anti-tumor efficacy, while SBRT alone delayed melanoma outgrowth. However, α-CD137 combined with α-PD-1 antibodies significantly enhanced the anti-tumor effect of SBRT, while the anti-tumor effect of SBRT was not enhanced by interleukin-2, or the combination of α-CTLA-4 and α-PD-1. We conclude that α-CD137 and α-PD-1 antibodies were most effective in enhancing SBRT-induced tumor growth delay in this mouse melanoma model, outperforming the ability of IL-2, or the combination of α-CTLA-4 and α-PD-1 to synergize with SBRT. Given the high mutational load and increased immunogenicity of human melanoma with the same genotype, our findings encourage testing α-CD137 and α-PD-1 alone or in combination with SBRT clinically, particularly in patients refractory to α-CTLA-4 and/or α-PD-1 therapy.


Assuntos
Códon , Melanoma/genética , Mutação , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Biomarcadores , Terapia Combinada , Modelos Animais de Doenças , Humanos , Imunomodulação/efeitos dos fármacos , Imunomodulação/efeitos da radiação , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/radioterapia , Camundongos , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores
19.
Blood ; 123(18): 2806-15, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24622325

RESUMO

All 6 human prosurvival Bcl-2 proteins can drive cancer development and contribute to therapy resistance. However, their relative abilities to protect cells against cancer therapy were not examined previously. We report that Bcl-2, Bcl-xL, or Bcl-w consistently protected leukemic cells better than Bcl-B, Bfl-1, or Mcl-1 against a wide variety of anticancer regimens. Current thinking would attribute this to differences in their ability to bind to BH3-only proteins, Bax, and Bak. To address this, we established the first complete, quantitative cellular interaction profile of all human prosurvival Bcl-2 proteins with all their proapoptotic relatives. Binding was unexpectedly promiscuous, except for Bad and Noxa, and did not explain the differential antiapoptotic capacity of the Bcl-2 proteins. Rather, Bcl-B, Bfl-1, or Mcl-1 proved less potent due to steady-state or drug-induced proteasomal degradation. All 6 Bcl-2 proteins similarly protected against the diverse anticancer regimens when expressed at equal protein levels, in agreement with their broad interaction profile. Therefore, clinical diagnostics should include all family members and should be performed at the protein rather than at the messenger RNA level. In drug development, targeting the ubiquitination machinery of prosurvival Bcl-2 proteins will complement and potentially improve on targeting Bcl-2 protein interactions with BH3 mimetics.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Antígenos de Histocompatibilidade Menor , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(30): 12385-90, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23832783

RESUMO

Osteoclasts (OCs) are bone-resorbing cells that are formed from hematopoietic precursors. OCs ordinarily maintain bone homeostasis, but they can also cause major pathology in autoimmune and inflammatory diseases. Under homeostatic conditions, receptor activator of nuclear factor kappa-B (RANK) ligand on osteoblasts drives OC differentiation by interaction with its receptor RANK on OC precursors. During chronic immune activation, RANK ligand on activated immune cells likewise drives pathogenic OC differentiation. We here report that the related TNF family member CD70 and its receptor CD27 can also mediate cross-talk between immune cells and OC precursors. We identified CD27 on a rare population (0.3%) of B220(-)c-Kit(+)CD115(+)CD11b(low) cells in the mouse bone marrow (BM) that are highly enriched for osteoclastogenic potential. We dissected this population into CD27(high) common precursors of OC, dendritic cells (DCs) and macrophages and CD27(low/neg) downstream precursors that could differentiate into OC and macrophages, but not DC. In a recombinant mouse model of chronic immune activation, sustained CD27/CD70 interactions caused an accumulation of OC precursors and a reduction in OC activity. These events were due to a CD27/CD70-dependent inhibition of OC differentiation from the OC precursors by BM-infiltrating, CD70(+)-activated immune cells. DC numbers in BM and spleen were increased, suggesting a skewing of the OC precursors toward DC differentiation. The impediment in OC differentiation culminated in a high trabecular bone mass pathology. Mice additionally presented anemia, leukopenia, and splenomegaly. Thus, under conditions of constitutive CD70 expression reflecting chronic immune activation, the CD27/CD70 system inhibits OC differentiation and favors DC differentiation.


Assuntos
Células da Medula Óssea/citologia , Ligante CD27/imunologia , Osteoclastos/citologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Células da Medula Óssea/imunologia , Diferenciação Celular , Divisão Celular , Feminino , Masculino , Camundongos , Osteoclastos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA