RESUMO
The misuse of novichok agents in assassination attempts has been reported in the international media since 2018. These relatively new class of neurotoxic agents is claimed to be more toxic than the agents of the G and V series and so far, there is no report yet in literature about potential antidotes against them. To shed some light into this issue, we report here the design and synthesis of NTMGMP, a surrogate of A-242 and also the first surrogate of a novichok agent useful for experimental evaluation of antidotes. Furthermore, the efficiency of the current commercial oximes to reactivate NTMGMP-inhibited acetylcholinesterase (AChE) was evaluated. The Ellman test was used to confirm the complete inhibition of AChE, and to compare the subsequent rates of reactivation in vitro as well as to evaluate aging. In parallel, molecular docking, molecular dynamics and MM-PBSA studies were performed on a computational model of the human AChE (HssAChE)/NTMGMP complex to assess the reactivation performances of the commercial oximes in silico. Experimental and theoretical studies matched the exact hierarchy of efficiency and pointed to trimedoxime as the most promising commercial oxime for reactivation of AChE inhibited by A-242.
Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Acetilcolinesterase , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Agentes Neurotóxicos/toxicidade , Oximas/farmacologiaRESUMO
CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS: The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.
Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Produtos Biológicos/farmacologia , Simulação de Dinâmica Molecular , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Antivirais/farmacologiaRESUMO
Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Feminino , Masculino , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Senoterapia , Imunossupressores , Sirolimo , Serina-Treonina Quinases TORRESUMO
In the present work, a library of 239 frentizole derivatives formerly synthesized by our research group were virtually screened on the FRB domain of mTOR in a search of potential binders for further experimental evaluation. 39 compounds from this library were virtually selected and classified in 7 groups according to their structural features. 9 representative compounds of these 7 groups were further submitted to rounds of MD simulation and MM-PBSA calculations. Analysis of our results pointed to the most promising among these groups as binders to the FRB domain of mTOR. We believe that they structurally represent a priority portion of the original library for further experimental evaluation.
Assuntos
Simulação de Dinâmica Molecular , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismoRESUMO
Recently, we reported a library of 82 compounds, selected from different databanks through virtual screening and docking studies, and pointed to 6 among them as potential repurposed dual binders to both the catalytic site and the secondary binding pockets of subunit A of ricin (RTA). Here, we report additional molecular modeling studies of an extended list of compounds from the original library. Rounds of flexible docking followed by molecular dynamics simulations and further rounds of MM-PBSA calculations using a more robust protocol, enabled a better investigation of the interactions of these compounds inside RTA, the elucidation of their dynamical behaviors, and updating the list of the most important residues for the ligand binding. Four compounds were pointed as potential repurposed ricin inhibitors that are worth being experimentally investigated.
RESUMO
The problem of the efficient treatment of acute organophosphorus (OP) poisoning needs more efforts in the development of a versatile antidote, applicable for treatment of the injuries of both peripheral and central nervous systems. A series of N-H, N-methyl, N-butyl, and N-phenyl derivatives of benzhydroxamic (1a-1d), 3-methoxybenzhydroxamic (2a-2d), 4-methoxybenzhydroxamic (3a-3d) acids, and corresponding salycilhydroxamates (4a-4d) was prepared. Their predicted hydrophobicity (log P) was evaluated as regards to ÐÐÐ score by the open access cheminformatics tools; prediction of the passive transport across the BBB was found by means on the parallel artificial membrane permeability assay (PAMPA). The data on reactivation capacity of human acetylcholinesterase (HssAChE) inhibited by GB, VX, and paraoxon was supported by molecular docking study on binding to the active site of the AChE, viability study against mammalian cells (Chinese hamster ovary CHO-K1), and biodegradability (Closed Bottle test OECD 301D). Among the studied compounds, N-butyl derivatives have better balanced combination of properties; among them, N-butylsalicylhydroxamic acid is most promising. The studied compounds demonstrate modest reactivation capacity; change of N-H by N-Me ensures the reactivation capacity in studied concentrations on all studied OP substrates; among N-butyl derivatives, the N-butylsalicylhydroxamic acid demonstrates most promising results within the series. The found regularities may lead to selection of perspective structures to complement current formulations for medical countermeasures against poisoning by organophosphorus toxicants.
Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Acetilcolinesterase/metabolismo , Animais , Antídotos/farmacologia , Células CHO , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Cricetinae , Cricetulus , Humanos , Simulação de Acoplamento Molecular , Oximas/química , Relação Estrutura-AtividadeRESUMO
Ricin is a potent cytotoxin with no available antidote. Its catalytic subunit, RTA, damages the ribosomal RNA (rRNA) of eukaryotic cells, preventing protein synthesis and eventually leading to cell death. The combination between easiness of obtention and high toxicity turns ricin into a potential weapon for terrorist attacks, urging the need of discovering effective antidotes. On this context, we used computational techniques, in order to identify potential ricin inhibitors among approved drugs. Two libraries were screened by two different docking algorithms, followed by molecular dynamics simulations and MM-PBSA calculations in order to corroborate the docking results. Three drugs were identified as potential ricin inhibitors: deferoxamine, leucovorin and plazomicin. Our calculations showed that these compounds were able to, simultaneously, form hydrogen bonds with residues of the catalytic site and the secondary binding site of RTA, qualifying as potential antidotes against intoxication by ricin.Communicated by Ramaswamy H. Sarma.
Assuntos
Ricina , Antídotos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacologiaRESUMO
The nerve agents of the A-series are relatively recent chemical weapons with no antidote available yet. Once inside the human body, those chemicals act similarly to the classic nerve agents, by binding to the catalytic residue Serine 203 (Ser203) of human acetylcholinesterase (HssAChE) and thus preventing the proper function of this enzyme. However, there is no experimental evidence yet if the current antidotes for intoxication by nerve agents are also capable of restoring AChE inhibited by the nerve agents of the A-series. In order to launch some light on this issue, we used computational techniques (molecular docking, molecular dynamics and MM-PBSA interaction energy calculations) to assess the performances of the four currently available commercial oximes (2-PAM, HI-6, obidoxime and trimedoxime) when in contact with HssAChE inhibited by the agent A-242. Based on the near-attack conformation (NAC) criterion, our results suggest that the commercial oximes would have limited efficacy to reactivate the enzyme since they are not able to properly approach the adduct Ser203-A-242. Among those oximes, trimedoxime seems to be the most promising, since it showed lower values of energy in the MM-PBSA calculations, a higher stability inside the catalytic anionic center (CAS) of HssAChE, and was able to adopt a position closer to the NAC that could enable the reactivation mechanism.
Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Acetilcolinesterase/metabolismo , Antídotos/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Agentes Neurotóxicos/toxicidade , Organofosfatos , Oximas/química , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Trimedoxima/farmacologiaRESUMO
The acute respiratory syndrome caused by the SARS-CoV-2, known as COVID-19, has been ruthlessly tormenting the world population for more than six months. However, so far no effective drug or vaccine against this plague have emerged yet, despite the huge effort in course by researchers and pharmaceutical companies worldwide. Willing to contribute with this fight to defeat COVID-19, we performed a virtual screening study on a library containing Food and Drug Administration (FDA) approved drugs, in a search for molecules capable of hitting three main molecular targets of SARS-CoV-2 currently available in the Protein Data Bank (PDB). Our results were refined with further molecular dynamics (MD) simulations and MM-PBSA calculations and pointed to 7 multi-target hits which we propose here for experimental evaluation and repurposing as potential drugs against COVID-19. Additional rounds of docking, MD simulations and MM-PBSA calculations with remdesivir suggested that this compound can also work as a multi-target drug against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Preparações Farmacêuticas , Inibidores de ProteasesRESUMO
Ricin is a toxin found in the castor seeds and listed as a chemical weapon by the Chemical Weapons Convention (CWC) due to its high toxicity combined with the easiness of obtention and lack of available antidotes. The relatively frequent episodes of usage or attempting to use ricin in terrorist attacks reinforce the urge to develop an antidote for this toxin. In this sense, we selected in this work the current RTA (ricin catalytic subunit) inhibitor with the best experimental performance, as a reference molecule for virtual screening in the PubChem database. The selected molecules were then evaluated through docking studies, followed by drug-likeness investigation, molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations. In every step, the selection of molecules was mainly based on their ability to occupy both the active and secondary sites of RTA, which are located right next to each other, but are not simultaneously occupied by the current RTA inhibitors. Results show that the three PubChem compounds 18309602, 18498053, and 136023163 presented better overall results than the reference molecule itself, showing up as new hits for the RTA inhibition, and encouraging further experimental evaluation.