Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer ; 123(4): 697-703, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27783399

RESUMO

BACKGROUND: Researchers have used prostate-specific antigen (PSA) values collected by central cancer registries to evaluate tumors for potential aggressive clinical disease. An independent study collecting PSA values suggested a high error rate (18%) related to implied decimal points. To evaluate the error rate in the Surveillance, Epidemiology, and End Results (SEER) program, a comprehensive review of PSA values recorded across all SEER registries was performed. METHODS: Consolidated PSA values for eligible prostate cancer cases in SEER registries were reviewed and compared with text documentation from abstracted records. Four types of classification errors were identified: implied decimal point errors, abstraction or coding implementation errors, nonsignificant errors, and changes related to "unknown" values. RESULTS: A total of 50,277 prostate cancer cases diagnosed in 2012 were reviewed. Approximately 94.15% of cases did not have meaningful changes (85.85% correct, 5.58% with a nonsignificant change of <1 ng/mL, and 2.80% with no clinical change). Approximately 5.70% of cases had meaningful changes (1.93% due to implied decimal point errors, 1.54% due to abstract or coding errors, and 2.23% due to errors related to unknown categories). Only 419 of the original 50,277 cases (0.83%) resulted in a change in disease stage due to a corrected PSA value. CONCLUSIONS: The implied decimal error rate was only 1.93% of all cases in the current validation study, with a meaningful error rate of 5.81%. The reasons for the lower error rate in SEER are likely due to ongoing and rigorous quality control and visual editing processes by the central registries. The SEER program currently is reviewing and correcting PSA values back to 2004 and will re-release these data in the public use research file. Cancer 2017;123:697-703. © 2016 American Cancer Society.


Assuntos
Valor Preditivo dos Testes , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/epidemiologia , Programa de SEER , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia
2.
Am J Pathol ; 181(2): 431-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22677421

RESUMO

Alcohol use disorders are associated with increased lung infections and exacerbations of chronic lung diseases. Whereas the effects of cigarette smoke are well recognized, the interplay of smoke and alcohol in modulating lung diseases is not clear. Because innate lung defense is mechanically maintained by airway cilia action and protein kinase C (PKC)-activating agents slow ciliary beat frequency (CBF), we hypothesized that the combination of smoke and alcohol would decrease CBF in a PKC-dependent manner. Primary ciliated bronchial epithelial cells were exposed to 5% cigarette smoke extract plus100 mmol/L ethanol for up to 24 hours and assayed for CBF and PKCε. Smoke and alcohol co-exposure activated PKCε by 1 hour and decreased both CBF and total number of beating cilia by 6 hours. A specific activator of PKCε, DCP-LA, slowed CBF after maximal PKCε activation. Interestingly, activation of PKCε by smoke and alcohol was only observed in ciliated cells, not basal bronchial epithelium. In precision-cut mouse lung slices treated with smoke and alcohol, PKCε activation preceded CBF slowing. Correspondingly, increased PKCε activity and cilia slowing were only observed in mice co-exposed to smoke and alcohol, regardless of the sequence of the combination exposure. No decreases in CBF were observed in PKCε knockout mice co-exposed to smoke and alcohol. These data identify PKCε as a key regulator of cilia slowing in response to combined smoke and alcohol-induced lung injury.


Assuntos
Brônquios/patologia , Cílios/metabolismo , Exposição Ambiental , Células Epiteliais/enzimologia , Etanol/efeitos adversos , Proteína Quinase C-épsilon/metabolismo , Fumar/efeitos adversos , Animais , Axonema/enzimologia , Biocatálise , Bovinos , Ativação Enzimática , Células Epiteliais/patologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Transporte Proteico
3.
Alcohol ; 48(5): 493-500, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880893

RESUMO

Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium.


Assuntos
Acetaldeído/metabolismo , Células Epiteliais/metabolismo , Malondialdeído/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Linhagem Celular , Quimiocinas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Proteína Quinase C/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Receptores Depuradores Classe A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA