Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(4): e2303945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705137

RESUMO

A water-in-salt electrolyte is a highly concentrated aqueous solution (i.e., 21 mol LiTFSI in 1 kg H2 O) that reduces the number of water molecules surrounding salt ions, thereby decreasing the water activity responsible for decomposition. This electrolyte widens the electrochemical stability window via the formation of a solid electrolyte interphase (SEI) at the electrode surface. However, using high concentration electrolytes in Li-ion battery technology to enhance energy density and increase cycling stability remains challenging. A parasitic reaction, called the hydrogen evolution reaction, occurs when the reaction operates at a lower voltage. It is demonstrated here that a micrometric white layer is indeed a component of the SEI layer, not just on the nanoscale, through the utilization of an operando high-resolution optical microscope. The results indicate that LiTFSI precipitation is the primary species present in the SEI layer. Furthermore, the passivation layer is found to be dynamic since it dissolves back into the electrolyte during open circuit voltage.

2.
Small ; : e2309556, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044315

RESUMO

Aqueous highly concentrated electrolytes (AHCEs) have recently emerged as an innovative strategy to enhance the cycling stability of aqueous Zinc (Zn) batteries (AZB). Particularly, thanks to high Zn Chloride (ZnCl2 ) solubility in water, AHCEs based on ZnCl2 feature remarkable Zn anode stability. However, due to their inherently acidic pH and Cl- anion reactivity, these electrolytes face compatibility challenges with other battery components. Here, an aqueous eutectic electrolyte (AEE) based on Brønsted-Lowry concept is reported-allowing the usage of cheap and abundant salts, ZnCl2, and sodium acetate (NaAc). The reported, pH buffered, AEE displays a higher coordination of water at an even lower salt concentration, by simply balancing the acceptor-donor H─bonding. This results in impressive improvement of electrolyte properties such as high electrochemical stability, high transport properties and low glass transition temperature. The developed AEE displays higher compatibility with vanadium oxide-based cathode with a 50% increase in capacity retention in comparison to sat. ZnCl2 . More importantly, the pH buffered AEE solves the incompatibility issues of ZnCl2 toward commonly used aluminium (Al) current collector as well as cellulose separator. This work presents an efficient, simple, and low-cost strategy for the development of aqueous electrolytes for the practical application of Zn batteries.

3.
Angew Chem Int Ed Engl ; 60(46): 24709-24715, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34528364

RESUMO

Aqueous sodium-ion batteries (ASIBs) are aspiring candidates for low environmental impact energy storage, especially when using organic electrodes. In this respect, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) is a promising anode active material, but it suffers from extensive dissolution in conventional aqueous electrolytes. As a remedy, we here present a novel aqueous electrolyte, which inhibits the PTCDA dissolution and enables their use as all-organic ASIB anodes with high capacity retention and Coulombic efficiencies. Furthermore, the electrolyte is based on two, hence "hybrid", inexpensive and non-fluorinated Na/Mg-salts, it displays favourable physico-chemical properties and an electrochemical stability window >3 V without resorting to the extreme salt concentrations of water-in-salt electrolytes. Altogether, this paves the way for ASIBs with both relatively high energy densities, inexpensive total cell chemistries, long-term sustainability, and improved safety.

4.
Angew Chem Int Ed Engl ; 59(37): 15913-15917, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32390281

RESUMO

Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Now, two distinct reduction potentials are revealed for the chemical environments of free and bound water and that both contribute to SEI formation. Free water is reduced about 1 V above bound water in a hydrogen evolution reaction (HER) and is responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.

5.
Int J Mol Sci ; 17(2): 223, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861309

RESUMO

Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of ¹H and (13)C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.


Assuntos
Guanidina/química , Micelas , Tensoativos/química , Calorimetria , Cátions , Guanidina/análogos & derivados , Espectroscopia de Ressonância Magnética , Tensão Superficial , Temperatura
6.
Adv Mater ; 36(13): e2311575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38152896

RESUMO

Carbonaceous electrocatalysts offer advantages over metal-based counterparts, being cost-effective, sustainable, and electrochemically stable. Their high surface area increases reaction kinetics, making them valuable for environmental applications involving contaminant removal. However, their rational synthesis is challenging due to the applied high temperatures and activation steps, leading to disordered materials with limited control over doping. Here, a new synthetic pathway using carbon oxide precursors and tin chloride as a p-block metal salt melt is presented. As a result, highly porous oxygen-rich carbon sheets (with a surface area of 1600 m2 g-1) are obtained at relatively low temperatures (400 °C). Mechanistic studies reveal that Sn(II) triggers reductive deoxygenation and concomitant condensation/cross-linking, facilitated by the Sn(II) → Sn(IV) transition. Due to their significant surface area and oxygen doping, these materials demonstrate exceptional electrocatalytic activity in the nitrate-to-ammonia conversion, with an ammonia yield rate of 221 mmol g-1 h-1 and a Faradic efficiency of 93%. These results surpass those of other carbon-based electrocatalysts. In situ Raman studies reveal that the reaction occurs through electrochemical hydrogenation, where active hydrogen is provided by water reduction. This work contributes to the development of carbonaceous electrocatalysts with enhanced performance for sustainable environmental applications.

7.
ACS Appl Mater Interfaces ; 9(37): 32018-32025, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28845972

RESUMO

Periodic mesoporous ionosilica nanoparticles with ammonium walls were synthesized exclusively from a trisilylated ammonium precursor. The nanoparticles display a uniform particle size, together with a high specific surface area and an ordered hexagonal pore architecture. Completely biocompatible in vitro and in vivo, the nanoparticles are efficiently endocytosed by RAW 264.7 macrophages and used as carrier vehicles for anionic drugs. Diclofenac-loaded ionosilica nanoparticles are very efficient in inhibiting lipopolysaccharides-induced inflammation.


Assuntos
Nanopartículas , Compostos de Amônio , Sistemas de Liberação de Medicamentos , Porosidade , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA