Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(4): 798-810, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721995

RESUMO

The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide mutational probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution is interdependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly available data set of 32,163 sequenced isolates from drug-naïve individuals. The most common amino acids in sequenced isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results indicate that the prevalence of multiple-base mutations in HIV-1 protease is strongly influenced by mutational sampling.


Assuntos
Evolução Molecular , Protease de HIV/genética , HIV-1/genética , Mutação Puntual , Código Genético , Seleção Genética
2.
Proc Natl Acad Sci U S A ; 114(44): 11751-11756, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078326

RESUMO

Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics.


Assuntos
Sistemas CRISPR-Cas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutagênese/genética , Animais , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas/efeitos dos fármacos , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Camundongos , Mutagênese/efeitos dos fármacos , Oncogenes/genética , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/genética
3.
Biochemistry ; 57(45): 6434-6442, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30358994

RESUMO

The malarial pathogen Plasmodium falciparum ( Pf) is a member of the Apicomplexa, which independently evolved a highly specific lactate dehydrogenase (LDH) from an ancestral malate dehydrogenase (MDH) via a five-residue insertion in a key active site loop. PfLDH is widely considered an attractive drug target because of its unique active site. The conservation of the apicomplexan loop suggests that a precise insertion sequence was required for the evolution of LDH specificity. Aside from a single critical tryptophan, W107f, the functional and structural roles of residues in the loop are currently unknown. Here we show that the loop is remarkably robust to mutation, as activity is resilient to radical perturbations of both loop identity and length. Thus, alternative insertions could have evolved LDH specificity as long as they contained a tryptophan in the proper location. PfLDH likely has great potential to develop resistance to drugs designed to target its distinctive active site loop.


Assuntos
L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Plasmodium falciparum/enzimologia , Conformação Proteica , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , L-Lactato Desidrogenase/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Homologia de Sequência
4.
Protein Sci ; 25(7): 1219-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27010590

RESUMO

The last decade has seen a growing number of experiments aimed at systematically mapping the effects of mutations in different proteins, and of attempting to correlate their biophysical and biochemical effects with organismal fitness. While insightful, systematic laboratory measurements of fitness effects present challenges and difficulties. Here, we discuss the limitations associated with such measurements, and in particular the challenge of correlating the effects of mutations at the single protein level ("protein fitness") with their effects on organismal fitness. A variety of experimental setups are used, with some measuring the direct effects on protein function and others monitoring the growth rate of a model organism carrying the protein mutants. The manners by which fitness effects are calculated and presented also vary, and the conclusions, including the derived distributions of fitness effects of mutations, vary accordingly. The comparison of the effects of mutations in the laboratory to the natural protein diversity, namely to amino acid changes that have fixed in the course of millions of years of evolution, is also debatable. The results of laboratory experiments may, therefore, be less relevant to understanding long-term inter-species variations yet insightful with regard to short-term polymorphism, for example, in the study of the effects of human SNPs.


Assuntos
Mutação , Proteínas/genética , Evolução Molecular , Aptidão Genética , Humanos
6.
Elife ; 32014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24966208

RESUMO

Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.


Assuntos
Apicomplexa/enzimologia , Evolução Molecular , L-Lactato Desidrogenase/química , Domínio Catalítico , Cryptosporidium parvum/enzimologia , Epistasia Genética , Escherichia coli/metabolismo , Malato Desidrogenase/química , Mutação , Filogenia , Plasmodium falciparum/enzimologia , Ligação Proteica , Conformação Proteica , Rickettsia/enzimologia , Toxoplasma/enzimologia , Triptofano/química
7.
Genetics ; 198(2): 461-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25316787

RESUMO

High-throughput sequencing has enabled many powerful approaches in biological research. Here, we review sequencing approaches to measure frequency changes within engineered mutational libraries subject to selection. These analyses can provide direct estimates of biochemical and fitness effects for all individual mutations across entire genes (and likely compact genomes in the near future) in genetically tractable systems such as microbes, viruses, and mammalian cells. The effects of mutations on experimental fitness can be assessed using sequencing to monitor time-dependent changes in mutant frequency during bulk competitions. The impact of mutations on biochemical functions can be determined using reporters or other means of separating variants based on individual activities (e.g., binding affinity for a partner molecule can be interrogated using surface display of libraries of mutant proteins and isolation of bound and unbound populations). The comprehensive investigation of mutant effects on both biochemical function and experimental fitness provide promising new avenues to investigate the connections between biochemistry, cell physiology, and evolution. We summarize recent findings from systematic mutational analyses; describe how they relate to a field rich in both theory and experimentation; and highlight how they may contribute to ongoing and future research into protein structure-function relationships, systems-level descriptions of cell physiology, and population-genetic inferences on the relative contributions of selection and drift.


Assuntos
Proteínas/genética , Animais , Deriva Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Genéticos , Mutação , Conformação Proteica , Estabilidade Proteica , Proteínas/química , Seleção Genética , Análise de Sequência de DNA
8.
Anal Biochem ; 375(2): 255-64, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18275835

RESUMO

Aberrant epidermal growth factor receptor (EGFR, ErbB1) signaling is implicated in cell transformation, motility, and invasion in a variety of cell types, and EGFR is the target of several anticancer drugs. However, the kinetics of EGFR signaling and the individual contributions of site-specific phosphorylation events remain largely unknown. A peptide-based, multiplex immunoassay approach was developed to simultaneously measure both total and phosphorylated protein in a single sample. The approach involves the proteolytic digestion of proteins prior to the isolation and quantitation of site-specific phosphorylation events within an individual protein. Quantitation of phosphorylated and total proteins, in picomolar to nanomolar concentrations, were interpolated from standard curves generated with synthetic peptides that correspond to the peptide targets used in the immunoassays. In this study, a bead-based, nine-plex immunoassay measuring total and phosphorylated protein was constructed to measure temporal, site-specific phosphorylation of key members of the EGFR pathway (ErbB1 receptor, MEK1, MEK2, ERK1, and ERK2) in A431 cells stimulated with epidermal growth factor. The effect of MEK inhibition on this pathway was determined using a known MEK kinase inhibitor, SL327. The results reported herein are the first quantitative measurements of site-specific phosphorylation events and total proteins in a single sample, at the same time representing a new paradigm for standardized protein and phosphorylation analysis using multiplexed, peptide-based, sandwich immunoassays.


Assuntos
Fator de Crescimento Epidérmico/imunologia , Fator de Crescimento Epidérmico/metabolismo , Imunoensaio/métodos , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/imunologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/análise , Epitopos/imunologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/análise , Dados de Sequência Molecular , Fosforilação , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA