Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
4.
Artigo em Inglês | MEDLINE | ID: mdl-38935097

RESUMO

Research efforts aimed at improving the crystal quality of solution-processed Cu2ZnSn(S,Se)4 (CZTSSe) absorbers have largely employed delicate pre- and postprocessing strategies, such as multistep selenization, heat treatment in mixed chalcogen atmospheres, and multinary extrinsic doping that are often complex and difficult to reproduce. On the other hand, understanding and tuning chemical interactions in precursor inks prior to the thin-film deposition have received significantly less attention. Herein, we show for the first time how the complexation of metallic and chalcogen precursors in solution have a stark influence on the crystallization and optoelectronic quality of CZTSSe absorbers. By varying thiourea to metal cation ratios (TU/M) in dimethylformamide (DMF) and isopropyl alcohol (IPA)-based inks, we observed the formation of nanoscale metal-organic complexes and submicron size aggregates which play a key role in the morphology of the precursor layers obtained by spin-coating and drying steps. We also identify the primary cations in the complexation and assembling processes in solution. The morphology of the precursor film, in turn, has an important effect on grain growth and film absorber structure after the reactive annealing in the presence of Se. Finally, we establish a link between metal complexes in precursor solutions and device performance, with power conversion efficiency increasing from approximately 2 to 8% depending on the TU/M and Cu/(Zn + Sn) ratios.

5.
iScience ; 9: 36-46, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384132

RESUMO

The performance of Cu2ZnSn(S,Se)4 thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (VOC) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale shunting paths in solution-processed CZTSSe films, which limit the VOC of cells to approximately 400 mV. These studies unveil areas of local effective work function (LEWF) narrowly distributed around 4.9 eV, whereas other portions show hotspots with LEWF as low as 4.2 eV. Localized valence band spectra and density functional theory calculations allow rationalizing the LEWF maps in terms of the CZTSSe effective work function broadened by potential energy fluctuations and nanoscale Sn(S,Se) phases.

6.
ACS Appl Mater Interfaces ; 8(19): 11893-7, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27135679

RESUMO

Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA