Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572650

RESUMO

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Assuntos
Prótese Vascular , Hemodinâmica , Humanos , Animais , Modelos Cardiovasculares , Falha de Prótese , Estresse Mecânico , Fenômenos Biomecânicos , Mecanotransdução Celular , Implante de Prótese Vascular/efeitos adversos , Desenho de Prótese , Oclusão de Enxerto Vascular/fisiopatologia , Oclusão de Enxerto Vascular/etiologia , Remodelação Vascular
2.
Npj Imaging ; 2(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706558

RESUMO

Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges - incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. We propose an optimization-based method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.

3.
NEJM AI ; 1(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343631

RESUMO

BACKGROUND: Large language models (LLMs) have recently shown impressive zero-shot capabilities, whereby they can use auxiliary data, without the availability of task-specific training examples, to complete a variety of natural language tasks, such as summarization, dialogue generation, and question answering. However, despite many promising applications of LLMs in clinical medicine, adoption of these models has been limited by their tendency to generate incorrect and sometimes even harmful statements. METHODS: We tasked a panel of eight board-certified clinicians and two health care practitioners with evaluating Almanac, an LLM framework augmented with retrieval capabilities from curated medical resources for medical guideline and treatment recommendations. The panel compared responses from Almanac and standard LLMs (ChatGPT-4, Bing, and Bard) versus a novel data set of 314 clinical questions spanning nine medical specialties. RESULTS: Almanac showed a significant improvement in performance compared with the standard LLMs across axes of factuality, completeness, user preference, and adversarial safety. CONCLUSIONS: Our results show the potential for LLMs with access to domain-specific corpora to be effective in clinical decision-making. The findings also underscore the importance of carefully testing LLMs before deployment to mitigate their shortcomings. (Funded by the National Institutes of Health, National Heart, Lung, and Blood Institute.).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA