Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 598(7): 1285-1305, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31789427

RESUMO

Cardiac excitation-contraction (E-C) coupling is influenced by (at least) three dynamic systems that couple and feedback to one another (see Abstract Figure). Here we review the mechanical effects on cardiomyocytes that include mechano-electro-transduction (commonly referred to as mechano-electric coupling, MEC) and mechano-chemo-transduction (MCT) mechanisms at cell and molecular levels which couple to Ca2+ -electro and E-C coupling reviewed elsewhere. These feedback loops from muscle contraction and mechano-transduction to the Ca2+ homeodynamics and to the electrical excitation are essential for understanding the E-C coupling dynamic system and arrhythmogenesis in mechanically loaded hearts. This white paper comprises two parts, each reflecting key aspects from the 2018 UC Davis symposium: MEC (how mechanical load influences electrical dynamics) and MCT (how mechanical load alters cell signalling and Ca2+ dynamics). Of course, such separation is artificial since Ca2+ dynamics profoundly affect ion channels and electrogenic transporters and vice versa. In time, these dynamic systems and their interactions must become fully integrated, and that should be a goal for a comprehensive understanding of how mechanical load influences cell signalling, Ca2+ homeodynamics and electrical dynamics. In this white paper we emphasize current understanding, consensus, controversies and the pressing issues for future investigations. Space constraints make it impossible to cover all relevant articles in the field, so we will focus on the topics discussed at the symposium.


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Arritmias Cardíacas , Acoplamento Excitação-Contração , Humanos
2.
Circ Res ; 115(1): 68-78, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24759929

RESUMO

RATIONALE: Cardiac function is dependent on the coordinate activities of membrane ion channels, transporters, pumps, and hormone receptors to tune the membrane electrochemical gradient dynamically in response to acute and chronic stress. Although our knowledge of membrane proteins has rapidly advanced during the past decade, our understanding of the subcellular pathways governing the trafficking and localization of integral membrane proteins is limited and essentially unstudied in vivo. In the heart, to our knowledge, there are no in vivo mechanistic studies that directly link endosome-based machinery with cardiac physiology. OBJECTIVE: To define the in vivo roles of endosome-based cellular machinery for cardiac membrane protein trafficking, myocyte excitability, and cardiac physiology. METHODS AND RESULTS: We identify the endosome-based Eps15 homology domain 3 (EHD3) pathway as essential for cardiac physiology. EHD3-deficient hearts display structural and functional defects including bradycardia and rate variability, conduction block, and blunted response to adrenergic stimulation. Mechanistically, EHD3 is critical for membrane protein trafficking, because EHD3-deficient myocytes display reduced expression/localization of Na/Ca exchanger and L-type Ca channel type 1.2 with a parallel reduction in Na/Ca exchanger-mediated membrane current and Cav1.2-mediated membrane current. Functionally, EHD3-deficient myocytes show increased sarcoplasmic reticulum [Ca], increased spark frequency, and reduced expression/localization of ankyrin-B, a binding partner for EHD3 and Na/Ca exchanger. Finally, we show that in vivo EHD3-deficient defects are attributable to cardiac-specific roles of EHD3 because mice with cardiac-selective EHD3 deficiency demonstrate both structural and electric phenotypes. CONCLUSIONS: These data provide new insight into the critical role of endosome-based pathways in membrane protein targeting and cardiac physiology. EHD3 is a critical component of protein trafficking in heart and is essential for the proper membrane targeting of select cellular proteins that maintain excitability.


Assuntos
Proteínas de Transporte/fisiologia , Endossomos/fisiologia , Coração/fisiologia , Animais , Anquirinas/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Frequência Cardíaca , Camundongos , Miócitos Cardíacos/fisiologia , Volume Sistólico
3.
J Physiol ; 593(6): 1331-45, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25772289

RESUMO

In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Na(+) channel structure, function and regulation, and Na(+)/Ca(2+) exchange and Na(+)/K(+) ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Na(+) in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Na(+) homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Na(+)-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Na(+) channels and Na(+) homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy.


Assuntos
Síndrome de Brugada/metabolismo , Parada Cardíaca/metabolismo , Sódio/metabolismo , Animais , Síndrome de Brugada/fisiopatologia , Congressos como Assunto , Parada Cardíaca/fisiopatologia , Humanos
4.
Circ Res ; 113(2): 142-52, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23674379

RESUMO

RATIONALE: The recessive form of catecholaminergic polymorphic ventricular tachycardia is caused by mutations in the cardiac calsequestrin-2 gene; this variant of catecholaminergic polymorphic ventricular tachycardia is less well characterized than the autosomal-dominant form caused by mutations in the ryanodine receptor-2 gene. OBJECTIVE: We characterized the intracellular Ca²âº homeostasis, electrophysiological properties, and ultrastructural features of the Ca²âº release units in the homozygous calsequestrin 2-R33Q knock-in mouse model (R33Q) R33Q knock-in mouse model. METHODS AND RESULTS: We studied isolated R33Q and wild-type ventricular myocytes and observed properties not previously identified in a catecholaminergic polymorphic ventricular tachycardia model. As compared with wild-type cells, R33Q myocytes (1) show spontaneous Ca²âº waves unable to propagate as cell-wide waves; (2) show smaller Ca²âºsparks with shortened coupling intervals, suggesting a reduced refractoriness of Ca²âº release events; (3) have a reduction of the area of membrane contact, of the junctions between junctional sarcoplasmic reticulum and T tubules (couplons), and of junctional sarcoplasmic reticulum volume; (4) have a propensity to develop phase 2 to 4 afterdepolarizations that can elicit triggered beats; and (5) involve viral gene transfer with wild-type cardiac calsequestrin-2 that is able to normalize structural abnormalities and to restore cell-wide calcium wave propagation. CONCLUSIONS: Our data show that homozygous cardiac calsequestrin-2-R33Q myocytes develop spontaneous Ca²âº release events with a broad range of intervals coupled to preceding beats, leading to the formation of early and delayed afterdepolarizations. They also display a major disruption of the Ca²âº release unit architecture that leads to fragmentation of spontaneous Ca²âº waves. We propose that these 2 substrates in R33Q myocytes synergize to provide a new arrhythmogenic mechanism for catecholaminergic polymorphic ventricular tachycardia.


Assuntos
Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/ultraestrutura , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Remodelação Ventricular/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia
5.
J Biol Chem ; 288(2): 1032-46, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23204520

RESUMO

Kinase/phosphatase balance governs cardiac excitability in health and disease. Although detailed mechanisms for cardiac kinase regulation are established, far less is known regarding cardiac protein phosphatase 2A (PP2A) regulation. This is largely due to the complexity of the PP2A holoenzyme structure (combinatorial assembly of three subunit enzyme from >17 subunit genes) and the inability to segregate "global" PP2A function from the activities of multiple "local" holoenzyme populations. Here we report that PP2A catalytic, regulatory, and scaffolding subunits are tightly regulated at transcriptional, translational, and post-translational levels to tune myocyte function at base line and in disease. We show that past global read-outs of cellular PP2A activity more appropriately represent the collective activity of numerous individual PP2A holoenzymes, each displaying a specific subcellular localization (dictated by select PP2A regulatory subunits) as well as local specific post-translational catalytic subunit methylation and phosphorylation events that regulate local and rapid holoenzyme assembly/disassembly (via leucine carboxymethyltransferase 1/phosphatase methylesterase 1 (LCMT-1/PME-1). We report that PP2A subunits are selectively regulated between human and animal models, across cardiac chambers, and even within specific cardiac cell types. Moreover, this regulation can be rapidly tuned in response to cellular activation. Finally, we report that global PP2A is altered in human and experimental models of heart disease, yet each pathology displays its own distinct molecular signature though specific PP2A subunit modulatory events. These new data provide an initial view into the signaling pathways that govern PP2A function in heart but also establish the first step in defining specific PP2A regulatory targets in health and disease.


Assuntos
Miocárdio/enzimologia , Proteína Fosfatase 2/metabolismo , Animais , Sequência de Bases , Primers do DNA , Cães , Humanos , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Proteína Fosfatase 2/genética , Transdução de Sinais , Transcrição Gênica
7.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23008441

RESUMO

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Cães , Variação Genética , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética
8.
Circ Res ; 109(3): 291-5, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21680895

RESUMO

RATIONALE: Flecainide prevents arrhythmias in catecholaminergic polymorphic ventricular tachycardia, but the antiarrhythmic mechanism remains unresolved. It is possible for flecainide to directly affect the cardiac ryanodine receptor (RyR2); however, an extracellular site of action is suggested because of the hydrophilic nature of flecainide. OBJECTIVE: To investigate the mechanism for the antiarrhythmic action of flecainide in a RyR2(R4496C+/-) knock-in mouse model of catecholaminergic polymorphic ventricular tachycardia. METHODS AND RESULTS: Flecainide prevented catecholamine-induced sustained ventricular tachycardia in RyR2(R4496C+/-) mice. Cellular studies were performed with isolated RyR2(R4496C+/-) myocytes. Isoproterenol caused the appearance of spontaneous Ca(2+) transients, which were unaffected by flecainide (6 µmol/L). Flecainide did not affect Ca(2+) transient amplitude, decay, or sarcoplasmic reticulum Ca(2+) content. Moreover, it did not affect the frequency of spontaneous Ca(2+) sparks in permeabilized myocytes. In contrast, flecainide effectively prevented triggered activity induced by isoproterenol. The threshold for action potential induction was increased significantly (P<0.01), which suggests a primary extracellular antiarrhythmic effect mediated by Na(+) channel blockade. CONCLUSIONS: Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in RyR2(R4496C+/-) mice; however, at variance with previous reports, we observed minimal effects on intracellular Ca(2+) homeostasis. Our data suggest that the antiarrhythmic activity of the drug is caused by reduction of Na(+) channel availability and by an increase in the threshold for triggered activity.


Assuntos
Antiarrítmicos/farmacologia , Flecainida/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/prevenção & controle , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Modelos Animais de Doenças , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/fisiologia , Técnicas de Introdução de Genes , Isoproterenol/farmacologia , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/fisiologia , Canais de Sódio/fisiologia , Simpatomiméticos/farmacologia , Taquicardia Ventricular/genética
9.
Am J Physiol Heart Circ Physiol ; 302(11): H2301-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22447939

RESUMO

In the ischemic myocardium, extracellular potassium ([K(+)](o)) increases to ≥20 mmol/l. To determine how lethal arrhythmias occur during ischemia, we investigated whether the increased spatial pattern of [K(+)](o), i.e., a regional or a global increase, affects the incidence of arrhythmias. Force, sarcomere length, membrane potential, and nonuniform intracellular Ca(2+) ([Ca(2+)](i)) were measured in rat ventricular trabeculae. A "regional" or "global" increase in [K(+)](o) was produced by exposing a restricted region of muscle to a jet of 30 mmol/l KCl or by superfusing trabeculae with a solution containing 30 mmol/l KCl, respectively. The increase in [Ca(2+)](i) (Ca(CW)) during Ca(2+) waves was measured (24°C, 3.0 mmol/l [Ca(2+)](o)). A regional increase in [K(+)](o) caused nonuniform [Ca(2+)](i) and contraction. In the presence of isoproterenol, the regional increase in [K(+)](o) induced sustained arrhythmias in 10 of 14 trabeculae, whereas the global increase did not induce such arrhythmias. During sustained arrhythmias, Ca(2+) surged within the jet-exposed region. In the absence of isoproterenol, the regional increase in [K(+)](o) increased Ca(CW), whereas the global increase decreased it. This increase in Ca(CW) with the regional increase in [K(+)](o) was not suppressed by 100 µmol/l streptomycin, whereas it was suppressed by 1) a combination of 10 µmol/l cilnidipine and 3 µmol/l SEA0400; 2) 20 mmol/l 2,3-butanedione monoxime; and 3) 10 µmol/l blebbistatin. A regional but not a global increase in [K(+)](o) induces sustained arrhythmias, probably due to nonuniform excitation-contraction coupling. The same mechanism may underlie arrhythmias during ischemia.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Ventrículos do Coração/fisiopatologia , Contração Miocárdica/fisiologia , Potássio/efeitos adversos , Animais , Cálcio/metabolismo , Cardiotônicos/farmacologia , Acoplamento Excitação-Contração/fisiologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Isoproterenol/farmacologia , Potenciais da Membrana/fisiologia , Modelos Animais , Contração Miocárdica/efeitos dos fármacos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Circ Res ; 107(1): 84-95, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20489164

RESUMO

RATIONALE: Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. OBJECTIVE: We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. METHODS AND RESULTS: We report the initial characterization of a large family of membrane trafficking proteins in human heart. We used a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified 4 members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are coexpressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. CONCLUSIONS: Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/genética , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Família Multigênica/fisiologia , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Proteínas de Transporte Vesicular/metabolismo
11.
J Mol Cell Cardiol ; 50(4): 662-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21232541

RESUMO

Purkinje fibers play an essential role in transmitting electrical impulses through the heart, but they may also serve as triggers for arrhythmias linked to defective intracellular calcium (Ca(2+)) regulation. Although prior studies have extensively characterized spontaneous Ca(2+) release in nondriven Purkinje cells, little attention has been paid to rate-dependent changes in Ca(2+) transients. Therefore we explored the behaviors of Ca(2+) transients at pacing rates ranging from 0.125 to 3 Hz in single canine Purkinje cells loaded with fluo3 and imaged with a confocal microscope. The experiments uncovered the following novel aspects of Ca(2+) regulation in Purkinje cells: 1) the cells exhibit a negative Ca(2+)-frequency relationship (at 2.5 Hz, Ca(2+) transient amplitude was 66 ± 6% smaller than that at 0.125 Hz); 2) sarcoplasmic reticulum (SR) Ca(2+) release occurs as a propagating wave at very low rates but is localized near the cell membrane at higher rates; 3) SR Ca(2+) load declines modestly (10 ± 5%) with an increase in pacing rate from 0.125 Hz to 2.5 Hz; 4) Ca(2+) transients show considerable beat-to-beat variability, with greater variability occurring at higher pacing rates. Analysis of beat-to-beat variability suggests that it can be accounted for by stochastic triggering of local Ca(2+) release events. Consistent with this hypothesis, an increase in triggering probability caused a decrease in the relative variability. These results offer new insight into how Ca(2+) release is normally regulated in Purkinje cells and provide clues regarding how disruptions in this regulation may lead to deleterious consequences such as arrhythmias.


Assuntos
Cálcio/metabolismo , Células de Purkinje/metabolismo , Animais , Cafeína/farmacologia , Células Cultivadas , Cães , Estimulação Elétrica , Frequência Cardíaca/efeitos dos fármacos , Microscopia Confocal , Células de Purkinje/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
12.
Circulation ; 121(25): 2711-7, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20547931

RESUMO

BACKGROUND: Arrhythmias are benign or lethal, depending on their sustainability and frequency. To determine why lethal arrhythmias are prone to occur in diseased hearts, usually characterized by nonuniform muscle contraction, we investigated the effect of nonuniformity on sustainability and frequency of triggered arrhythmias. METHODS AND RESULTS: Force, membrane potential, and intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in 51 rat ventricular trabeculae. Nonuniform contraction was produced by exposing a restricted region of muscle to a jet of 20 mmol/L 2,3-butanedione monoxime (BDM) or 20 mumol/L blebbistatin. Sustained arrhythmias (>10 seconds) could be induced by stimulus trains for 7.5 seconds only with the BDM or blebbistatin jet (100 nmol/L isoproterenol, 1.0 mmol/L [Ca(2+)](o), 24 degrees C). During sustained arrhythmias, Ca(2+) surges preceded synchronous increases in [Ca(2+)](i), whereas the stoppage of the BDM jet made the Ca(2+) surges unclear and arrested sustained arrhythmias (n=6). With 200 nmol/L isoproterenol, 2.5 mmol/L [Ca(2+)](o), and the BDM jet, lengthening or shortening of the muscle during sustained arrhythmias accelerated or decelerated their cycle in both the absence (n=10) and presence (n=10) of 100 mumol/L streptomycin, a stretch-activated channel blocker, respectively. The maximum rate of force relaxation correlated inversely with the change in cycle lengths (n=14; P<0.01). Sustained arrhythmias with the BDM jet were significantly accelerated by 30 mumol/L SCH00013, a Ca(2+) sensitizer of myofilaments (n=10). CONCLUSIONS: These results suggest that nonuniformity of muscle contraction is an important determinant of the sustainability and frequency of triggered arrhythmias caused by the surge of Ca(2+) dissociated from myofilaments in cardiac muscle.


Assuntos
Arritmias Cardíacas/etiologia , Contração Miocárdica , Citoesqueleto de Actina , Animais , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Diacetil/análogos & derivados , Coração/fisiopatologia , Ventrículos do Coração , Compostos Heterocíclicos de 4 ou mais Anéis , Potenciais da Membrana , Ratos
13.
Prog Biophys Mol Biol ; 166: 22-28, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853595

RESUMO

This article reviews work over the past three decades that is related to the contribution of the pacemaker current, If, to basal and autonomically regulated spontaneous rate in the sinoatrial node. It also addresses how the actions of the pacemaker current relate to those of Ca homeostasis with respect to basal and autonomically regulated rhythm. In this regard, it explores the relative contributions of Ca-sensitive and Ca-insensitive isoforms of adenylyl cyclase to sinoatrial node automaticity. The latter studies include previously unpublished work making use of mice in which both the type 1 and type 8 Ca-sensitive adenylyl cyclase isoforms were knocked out. These studies indicate that the pacemaker current and the L-type Ca current are distinctly influenced by Ca-sensitive and insensitive adenylyl cyclase isoforms.


Assuntos
Marca-Passo Artificial , Nó Sinoatrial , Potenciais de Ação , Adenilil Ciclases , Animais , Cálcio , Camundongos , Isoformas de Proteínas
14.
Arrhythm Electrophysiol Rev ; 10(3): 190-197, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34777824

RESUMO

The His-Purkinje system is a network of bundles and fibres comprised of specialised cells that allow for coordinated, synchronous activation of the ventricles. Although the histology and physiology of the His-Purkinje system have been studied for more than a century, its role in ventricular arrhythmias has recently been discovered with the ongoing elucidation of the mechanisms leading to both benign and life-threatening arrhythmias. Studies of Purkinje-cell electrophysiology show multiple mechanisms responsible for ventricular arrhythmias, including enhanced automaticity, triggered activity and reentry. The variation in functional properties of Purkinje cells in different areas of the His-Purkinje system underlie the propensity for reentry within Purkinje fibres in structurally normal and abnormal hearts. Catheter ablation is an effective therapy in nearly all forms of reentrant arrhythmias involving Purkinje tissue. However, identifying those at risk of developing fascicular arrhythmias is not yet possible. Future research is needed to understand the precise molecular and functional changes resulting in these arrhythmias.

15.
PLoS Comput Biol ; 5(12): e1000583, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19997488

RESUMO

Calmodulin kinase II (CaMKII) mediates critical signaling pathways responsible for divergent functions in the heart including calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ). These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for improving conduction and reducing heterogeneity in the infarcted heart.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Biologia Computacional/métodos , Sistema de Condução Cardíaco/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Cães , Immunoblotting , Modelos Biológicos , Infarto do Miocárdio/enzimologia , Oxirredução , Estresse Oxidativo , Fosforilação , Reprodutibilidade dos Testes , Canais de Sódio/fisiologia
16.
Biophys J ; 96(8): 3092-101, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19383455

RESUMO

UNLABELLED: Ionic channels and gap junctions are remodeled in cells from the 5-day epicardial border zone (EBZ) of the healing canine infarct. The main objective of the study was to determine the effect of gap junctional conductance (Gj) remodeling and Cx43 redistribution to the lateral membrane on conduction velocity (theta) and anisotropic ratio, and how gap junctional remodeling is modulated by the extracellular space. We first implemented subcellular monodomain and two-domain computer models of normal epicardium (NZ) to understand how extracellular space modulates the relationship between Gj and theta in NZ. We found that the extracellular space flattens the Gj-theta relationship, thus theta becomes less sensitive to changes in Gj. We then investigated the functional consequences of Gj remodeling and Cx43 distribution in subcellular computer models of cells of the outer pathway (IZo) and central pathway (IZc) of reentrant circuits. In IZo cells, side-to-side (transverse) Gj is 10% the value in NZ cells. Such Gj remodeling causes a 45% decrease in transverse theta (theta(T)). Inclusion of an extracellular space reduces the decrease in theta(T) to 31%. In IZc cells, Cx43 redistribution along the lateral membrane results in a 29% increase in theta(T). That increase in theta(T) is a consequence of the decrease in access resistance to the Cx43 plaques that occur with the Cx43 redistribution. Extracellular space reduces the increase in theta(T) to 10%. IN CONCLUSION: 1), The extracellular space included in normal epicardial simulations flattens the Gj-theta relationship with theta becoming less sensitive to changes in Gj. 2), The extracellular space attenuates the effects of gap junction epicardial border zone remodeling (i.e., Gj reduction and Cx43 lateralization) on theta(T).


Assuntos
Simulação por Computador , Espaço Extracelular/fisiologia , Junções Comunicantes/fisiologia , Modelos Cardiovasculares , Pericárdio/fisiologia , Anisotropia , Membrana Celular/fisiologia , Conexina 43/metabolismo , Coração/fisiologia , Miocárdio/citologia , Pericárdio/citologia
17.
Prog Biophys Mol Biol ; 97(2-3): 312-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18394686

RESUMO

Starling's Law and the well-known end-systolic pressure-volume relationship (ESPVR) of the left ventricle reflect the effect of sarcomere length (SL) on stress (sigma) development and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL-[Ca2+]free relationships (sigma-SL-CaR) at submaximal [Ca2+] in intact and skinned trabeculae were similar, albeit that the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-CaR using a kinetic model where we assumed that the rates of Ca2+ binding by Troponin-C (Tn-C) and/or cross-bridge (XB) cycling are determined by SL, [Ca2+] or stress. We analyzed the correlation between the model results and steady state stress measurements at varied SL and [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that: (i) the dominant feedback mechanism is SL, stress or [Ca2+]-dependent; and (ii) the feedback mechanism regulates: Tn-C-Ca2+ affinity, XB kinetics or, unitary XB-force. The analysis strongly suggests that feedback of the number of strong XBs to cardiac Tn-C-Ca2+ affinity is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch-stress accurately reproduced the sigma-SL-CaR and the time course of twitch-stress as well as the time course of intracellular [Ca2+]i. Modeling of the response of the cardiac twitch to rapid stress changes using the above feedback model uniquely predicted the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. The above concept has important repercussions for the non-uniformly contracting heart in which arrhythmogenic Ca2+ waves arise from weakened areas in cardiac muscle. These Ca2+ waves can reversibly be induced in muscle with non-uniform excitation contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). These observations suggest the unifying hypothesis that force feedback to Ca2+ binding by Tn-C is responsible for Starling's Law and the ESPVR in uniform myocardium and leads in non-uniform myocardium to a surge of Ca2+ released by the myofilaments during relaxation, which initiates arrhythmogenic propagating Ca2+ release by the SR.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Sarcômeros/fisiologia , Retículo Sarcoplasmático/fisiologia , Animais , Fenômenos Biomecânicos , Ratos , Troponina C/metabolismo
18.
Heart Rhythm ; 16(7): 1121-1126, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30716412

RESUMO

Much has been written about arrhythmias in structurally normal hearts. In this review, we focus on rapid ventricular arrhythmias that occur in hearts having a pathogenic genetic variant that has been found in families in which arrhythmias occur. We discuss these mutations in terms of their effect on cardiac cell electrical function and initiation of arrhythmias. We also focus on Purkinje cells, their anatomic networks, and their molecular signatures as the sites of origin of arrhythmias. We discuss therapeutic options for treatment of these potentially life-threatening arrhythmias. Although all Purkinje-based arrhythmias are not included (eg, conduction block rhythms), syndromes discussed include idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, Andersen-Tawil syndrome, and Brugada syndrome.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Ramos Subendocárdicos/patologia , Variação Genética , Humanos , Mutação
19.
Heart Rhythm ; 16(4): 615-623, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30445170

RESUMO

BACKGROUND: The apamin-sensitive small-conductance calcium-activated K (SK) current IKAS modulates automaticity of the sinus node. IKAS blockade by apamin causes sinus bradycardia. OBJECTIVE: The purpose of this study was to test the hypothesis that IKAS modulates ventricular automaticity. METHODS: We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff-perfused rabbit ventricles with atrioventricular block (protocol 1) and on recorded transmembrane action potential of pseudotendons of superfused right ventricular endocardial preparations (protocol 2). RESULTS: All preparations exhibited spontaneous ventricular escape rhythms. In protocol 1, apamin decreased the atrial rate from 186.2 ± 18.0 bpm to 163.8 ± 18.7 bpm (N = 6; P = .006) but accelerated the ventricular escape rate from 51.5 ± 10.7 bpm to 98.2 ± 25.4 bpm (P = .031). Three preparations exhibited bursts of nonsustained ventricular tachycardia and pauses, resulting in repeated burst termination pattern. In protocol 2, apamin increased the ventricular escape rate from 70.2 ± 13.1 bpm to 110.1 ± 2.2 bpm (P = .035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37 ± 3.55 mV/s vs 18.93 ± 3.26 mV/s, N = 3; P = .231, ), but the threshold of phase 0 activation (mV) reduced from -67.97 ± 1.53 to -75.26 ± 0.28 (P = .034). Addition of JTV-519, a ryanodine receptor 2 stabilizer, in 5 preparations reduced escape rate back to baseline. CONCLUSION: Contrary to its bradycardic effect in the sinus node, IKAS blockade by apamin accelerates ventricular automaticity and causes repeated nonsustained ventricular tachycardia in normal ventricles. ryanodine receptor 2 blockade reversed the apamin effects on ventricular automaticity.


Assuntos
Apamina/farmacologia , Bloqueio Atrioventricular/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Taquicardia Ventricular/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Bloqueio Atrioventricular/fisiopatologia , Ramos Subendocárdicos/fisiologia , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia
20.
J Mol Cell Cardiol ; 45(5): 617-24, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18778712

RESUMO

Cardiac Purkinje fibers, due to their unique anatomical location, cell structure and electrophysiologic characteristics, play an important role in cardiac conduction and arrhythmogenesis. Purkinje cell action potentials are longer than their ventricular counterpart, and display two levels of resting potential. Purkinje cells provide for rapid propagation of the cardiac impulse to ventricular cells and have pacemaker and triggered activity, which differs from ventricular cells. Additionally, a unique intracellular Ca2+ release coordination has been revealed recently for the normal Purkinje cell. However, since the isolation of single Purkinje cells is difficult, particularly in small animals, research using Purkinje cells has been restricted. This review concentrates on comparison of Purkinje and ventricular cells in the morphology of the action potential, ionic channel function and molecular determinants by summarizing our present day knowledge of Purkinje cells.


Assuntos
Ventrículos do Coração/citologia , Células de Purkinje/citologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Conexinas/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Humanos , Canais Iônicos/metabolismo , Íons , Masculino , Modelos Biológicos , Potássio/metabolismo , Isoformas de Proteínas , Células de Purkinje/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA