Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2311564120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048468

RESUMO

Soils are common sources of metal(loid) contaminant exposure globally. Lead (Pb) and arsenic (As) are of paramount concern due to detrimental neurological and carcinogenic health effects, respectively. Pb and/or As contaminated soils require remediation, typically leading to excavation, a costly and environmentally damaging practice of removing soil to a central location (e.g., hazardous landfill) that may not be a viable option in low-income countries. Chemical remediation techniques may allow for in situ conversion of soil contaminants to phases that are not easily mobilized upon ingestion; however, effective chemical remediation options are limited. Here, we have successfully tested a soil remediation technology using potted soils that relies on converting soil Pb and As into jarosite-group minerals, such as plumbojarosite (PLJ) and beudantite, possessing exceptionally low bioaccessibility [i.e., solubility at gastric pH conditions (pH 1.5 to 3)]. Across all experiments conducted, all new treatment methods successfully promoted PLJ and/or beudantite conversion, resulting in a proportional decrease in Pb and As bioaccessibility. Increasing temperature resulted in increased conversion to jarosite-group minerals, but addition of potassium (K) jarosite was most critical to Pb and As bioaccessibility decreases. Our methods of K-jarosite treatment yielded <10% Pb and As bioaccessibility compared to unamended soil values of approximately 70% and 60%, respectively. The proposed treatment is a rare dual remediation option that effectively treats soil Pb and As such that potential exposure is considerably reduced. Research presented here lays the foundation for ongoing field application.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Potássio , Solo , Chumbo , Poluentes do Solo/análise , Minerais , Disponibilidade Biológica
2.
Environ Sci Technol ; 58(21): 9339-9349, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748567

RESUMO

Residential lead (Pb) exposure is of critical concern to families globally as Pb promotes severe neurological effects in children, especially those less than 5 years old, and no blood lead level is deemed safe by the US Center for Disease Control. House dust and soils are commonly thought to be important sources of Pb exposure. Probing the relationship between house dust and soil Pb is critical to understanding residential exposure, as Pb bioavailability is highly influenced by Pb sources and/or species. We investigated paired house dust and soil collected from homes built before 1978 to determine Pb speciation, source, and bioaccessibility with the primary goal of assessing chemical factors driving Pb exposure in residential media. House dust was predominately found to contain (hydro)cerussite (i.e., Pb (hydroxy)carbonate) phases commonly used in Pb-based paint that, in-turn, promoted elevated bioaccessibility (>60%). Pb X-ray absorption spectroscopy, µ-XRF mapping, and Pb isotope ratio analysis for house dust and soils support house dust Pb as chemically unique compared to exterior soils, although paint Pb is expected to be a major source for both. Soil pedogenesis and increased protection from environmental conditions (e.g., weathering) in households is expected to greatly impact Pb phase differences between house dust and soils, subsequently dictating differences in Pb exposure.


Assuntos
Poeira , Chumbo , Poluentes do Solo , Solo , Poeira/análise , Chumbo/análise , Poluentes do Solo/análise , Estados Unidos , Solo/química , Habitação , Humanos , Monitoramento Ambiental
3.
Ecotoxicol Environ Saf ; 249: 114430, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192935

RESUMO

The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbioma Gastrointestinal/genética , Chumbo/toxicidade , Chumbo/metabolismo , Bactérias/metabolismo , Firmicutes/metabolismo , Solo
4.
J Toxicol Environ Health B Crit Rev ; 25(1): 1-22, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706629

RESUMO

Extensive research has examined arsenic (As) bioavailability in contaminated soils and is routinely assessed using in vitro bioaccessibility (IVBA) assays. Analysis of differences in bioaccessibility measurements across IVBA assays and phases is expected to provide valuable insights into geochemical mechanisms controlling soil As bioaccessibility and bioavailability. Soil iron (Fe) content and As speciation are expected to significantly influence IVBA gastric and intestinal phases due to fluctuations in precipitation-dissolution chemistry and sorption reactivity as pH and assay chemical complexity changes. The aim of this review was to examine these relationships by 1) conducting a meta-analysis (n = 47 soils) determining the influence of total Fe on As bioaccessibility measurements and 5 IVBA assays and 2) investigating the effect of As speciation on gastric/intestinal phase IVBA and in vitro-in vivo correlations. Our findings indicate that soil Fe content and As speciation heterogeneity are important in elucidating variability of bioaccessibility measurements across IVBA assays and gastrointestinal phases. Greater focus on coupled As speciation and Fe precipitation chemistry may (1) improve our understanding of soil geochemical factors and assay constituents that influence As in vitro-in vivo correlations and (2) resolve variability in the precision of oral relative bioavailability (RBA) estimated using IVBA assays for soils possessing heterogenous As speciation and Fe composition.


Assuntos
Arsênio/análise , Ferro/análise , Poluentes do Solo/análise , Animais , Arsênio/farmacocinética , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Humanos , Solo/química
5.
Environ Sci Technol ; 56(22): 15718-15727, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239028

RESUMO

Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95-100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. µ-X-ray fluorescence (µ-XRF) and µ-X-ray absorption near-edge structure (µ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.


Assuntos
Poluentes do Solo , Poluentes do Solo/química , Chumbo/análise , Potássio/análise , Temperatura , Solo/química , Disponibilidade Biológica , Minerais/química
6.
J Toxicol Environ Health A ; 85(19): 815-825, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-35791284

RESUMO

Accurate assessment of adverse health effects attributable to ingestion of inorganic arsenic (As) present in contaminated soils requires determination of the internal dose of metal provided by ingested soil. This calculation requires estimation of the oral bioavailability of soil-borne (As). Animal models to assess the bioavailability of soil (As) are frequently used as surrogates for determination of this variable in humans. A mouse assay has been widely applied to estimate the bioavailability of As in soils at sites impacted by mining, smelting, and pesticides. In the mouse assay, the relative bioavailability (RBA) of soil (As) is determined as the ratio of the fraction of the ingested arsenic dose excreted in urine after consumption of diets containing a test soil or the soluble reference compound, sodium arsenate. The aim of the current study was to compare (As) bioavailability measured in the mouse assay with reported estimates in humans. Here, a pharmacokinetic model based on excretion of arsenic in urine and feces was used to estimate the absolute bioavailability (ABA) of As in mice that received an oral dose of sodium arsenate. Based upon this analysis, in mice that consumed diet amended with sodium arsenate, the ABA was 85%. This estimate of arsenic ABA for the mouse is comparable to estimates in humans who consumed (As) in drinking water and diet, and to estimates of ABA in monkeys and swine exposed to sodium arsenate. The concordance of estimates for ABA in mice and humans provides further support for use of the mouse model in human health risk assessment. Sodium arsenate ABA also provides a basis for estimating soil arsenic ABA from RBA estimates obtained in the mouse model.


Assuntos
Arsênio , Arsenicais , Poluentes do Solo , Animais , Arsênio/farmacocinética , Disponibilidade Biológica , Modelos Animais de Doenças , Humanos , Camundongos , Solo , Poluentes do Solo/farmacocinética , Suínos
7.
J Toxicol Environ Health B Crit Rev ; 24(7): 307-324, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34092204

RESUMO

Widespread contamination of soil, dust, and food with toxic metal(loid)s pose a significant public health concern. Only a portion of orally ingested metal(loid) contaminants are bioavailable, which is defined as the fraction of ingested metal(loid)s absorbed across the gastrointestinal barrier and into systemic circulation. Bioaccessibility tools are a class of in vitro assays used as a surrogate to estimate risk of oral exposure and bioavailability. Although development and use of bioaccessibility tools have contributed to our understanding of the factors influencing oral bioavailability of metal(loid)s, some of these assays may lack data that support their use in decisions concerning adverse health risks and soil remediation. This review discusses the factors known to influence bioaccessibility of metal(loid) contaminants and evaluates experimental approaches and key findings of SW-846 Test Method 1340, Unified BARGE Method, Simulated Human Intestinal Microbial Ecosystem, Solubility Bioaccessibility Research Consortium assay, In Vitro Gastrointestinal model, TNO-Gastrointestinal Model, and Dutch National Institute for Public Health and the Environment bioaccessibility models which are used to assess oral absolute bioavailability and relative bioavailability in solid matrices. The aim of this review was to identify emerging knowledge gaps and research needs with an emphasis on research required to evaluate these models on (1) standardization of assay techniques and methodology, and (2) use of common criteria for assessing the performance of bioaccessibility models.


Assuntos
Monitoramento Ambiental/métodos , Metaloides/análise , Metais/análise , Animais , Disponibilidade Biológica , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Contaminação de Alimentos/análise , Humanos , Metaloides/toxicidade , Saúde Pública , Medição de Risco/métodos , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Environ Sci Technol ; 55(23): 15950-15960, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806356

RESUMO

Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Poluição Ambiental , Camundongos , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X
9.
Environ Sci Technol ; 55(1): 402-411, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33307690

RESUMO

House dust and soils can be major sources of lead (Pb) exposure for children. The American Healthy Homes Survey (AHHS) was developed to estimate Pb exposure from house dust and soil, in addition to other potential household contaminants and allergens. We have combined X-ray absorption spectroscopic (XAS) fingerprinting and in vivo mouse relative bioavailability (RBA) measurements for a subset of house dust and residential soils collected in the AHHS, with the primary objective of gaining a better understanding of determinants of house dust Pb bioavailability. Lead speciation was well related to variations in RBA results and revealed that highly bioavailable Pb (hydroxy)carbonate (indicative of Pb-based paint) was the major Pb species present in house dusts. Measured Pb RBA was up to 100% and is likely driven by paint Pb. To our knowledge, this is the first report of in vivo Pb RBA for U.S. house dust contaminated in situ with paint Pb and corroborates results from a previous study that demonstrated high RBA of paint Pb added to soil. We also report a relatively low RBA (23%) in a residential soil where the major Pb species was found to be plumbojarosite, consistent with a previous report that plumbojarosite lowers Pb RBA in soils.


Assuntos
Poeira , Poluentes do Solo , Animais , Disponibilidade Biológica , Poeira/análise , Camundongos , Pintura , Solo , Poluentes do Solo/análise
10.
Environ Sci Technol ; 53(21): 12556-12564, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31557437

RESUMO

Effects of dietary P level on the oral bioavailability of Pb present in soil were examined in a mouse model. Adult female C57BL/6 mice had free access to AIN-93G purified rodent diet amended with Pb as a soluble salt, Pb acetate, or in a soil matrix (NIST SRM 2710a). In these studies, the basal diet contained P at a nutritionally sufficient level (0.3% w/w) and the modified diets contained P at a lower (0.15%) or a higher (1.2%) level. For either dietary Pb source (Pb acetate or NIST SRM 2710a), low dietary P level markedly increased accumulation of Pb in bone, blood, and kidney. Tissue Pb levels in mice fed a high P in diet were not different from mice fed the basal P diet. Dietary P and Pb interacted to affect body weight change and feed efficiency in mice. The relative contribution of different Pb species in diet and feces was also affected by dietary P level. Differences in Pb species between diet and feces indicated that transformation of Pb species can occur during gastrointestinal tract transit. These interactions between Pb and P that alter Pb speciation may be important determinants of the bioavailability of Pb ingested in soil.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29553912

RESUMO

Arsenic (As) is the most frequently occurring contaminant on the priority list of hazardous substances, which lists substances of greatest public health concern to people living at or near U.S. National Priorities List site. Accurate assessment of human health risks from exposure to As-contaminated soils depends on estimating its bioavailability, defined as the fraction of ingested As absorbed across the gastrointestinal barrier and available for systemic distribution and metabolism. Arsenic bioavailability varies among soils and is influenced by site-specific soil physical and chemical characteristics and internal biological factors. This review describes the state-of-the science that supports our understanding of oral bioavailability of soil As, the methods that are currently being explored for estimating soil As relative bioavailability (RBA), and future research areas that could improve our prediction of the oral RBA of soil As in humans. The following topics are addressed: (1) As soil geochemistry; (2) As toxicology; (3) in vivo models for estimating As RBA; (4) in vitro bioaccessibility methods; and (5) conclusions and research needs.


Assuntos
Arsênio/metabolismo , Técnicas In Vitro/métodos , Medição de Risco/métodos , Poluentes do Solo/metabolismo , Arsênio/farmacocinética , Disponibilidade Biológica , Humanos , Solo/química , Poluentes do Solo/farmacocinética
12.
Environ Sci Technol ; 52(23): 13908-13913, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30358995

RESUMO

Effects of different treatments on the bioavailability of lead (Pb) in soil from a smelter emission contaminated site in Joplin, Missouri, were evaluated in a mouse model. Similar estimates of relative bioavailability for Pb in untreated or treated soil were obtained in mice and in the well-established juvenile swine model. In the mouse model, treatments that used phosphate (phosphoric acid or triple superphosphate) combined with iron oxide or biosolids compost significantly reduced soil Pb bioavailability. Notably, effects of these remediation procedures were persistent, given that up to 16 years had elapsed between soil treatment and sample collection. Remediation of soils was associated with changes in Pb species present in soil. Differences in Pb species in ingested soil and in feces from treated mice indicated that changes in Pb speciation occurred during transit through the gastrointestinal tract. Use of the mouse model facilitates evaluation of remediation procedures and allows monitoring of the performance of procedures under laboratory and field conditions.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Camundongos , Missouri , Fosfatos , Suínos
13.
Environ Res ; 167: 240-247, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30059858

RESUMO

Children may be exposed to environmental contaminants through incidental ingestion of soil resulting from hand-to-mouth contact. We measured soil adherence to the skin among 86 children from four kindergartens and one elementary school in Taiwan. Rinse water samples were collected from the hands, forearms, feet and lower legs of children after they had engaged in assigned activity groups (pre-activity, indirect contact and direct contact) from two different soil textures groups: sand and clay. We found that the soil loadings significantly differed between the different soil textures, body parts, activities, and clothing groups. Measured soil loadings for hands of pre-activity, indirect contact activity, and direct contact activity groups were 0.0069, 0.0307 and 0.153 mg cm-2, respectively, for the group playing on sand and 0.0061, 0.0116 and 0.0942 mg cm-2, respectively, for the group playing on clay. To facilitate the use of soil adherence data in exposure assessments, we provided a new and simple way to group activities based on the intensity of children's interactions with soil. The adherence data from this study can help enhance existing information based on soil-to-skin adherence factors used to assess children's exposure to soil contaminants during their play activities.


Assuntos
Exposição Ambiental/análise , Pele/efeitos dos fármacos , Poluentes do Solo/análise , Criança , Humanos , Jogos e Brinquedos , Taiwan
14.
J Toxicol Environ Health A ; 81(6): 160-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29336680

RESUMO

Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the usefulness of these models beyond the range of soil conditions evaluated, as evidenced by reduced predictive performance when applied to new data. In response, hierarchical models that consider variability in relationships among soil properties and As bioaccessibility across geographic locations and contaminant sources were developed to predict As bioaccessibility in 139 soils on both a mass fraction (mg/kg) and % basis. The hierarchical approach improved the estimation of As bioaccessibility in studied soils. In addition, the number of soil elements identified as statistically significant explanatory variables increased when compared to previous investigations. Specifically, total soil Fe, P, Ca, Co, and V were significant explanatory variables in both models, while total As, Cd, Cu, Ni, and Zn were also significant in the mass fraction model and Mg was significant in the % model. This developed hierarchical approach provides a novel tool to (1) explore relationships between soil properties and As bioaccessibility across a broad range of soil types and As contaminant sources encountered in the environment and (2) identify areas of future mechanistic research to better understand the complexity of interactions between soil properties and As bioaccessibility.


Assuntos
Arsênio/metabolismo , Monitoramento Ambiental/métodos , Poluentes do Solo/metabolismo , Solo/química , Arsênio/farmacocinética , Disponibilidade Biológica , Modelos Teóricos , Poluentes do Solo/farmacocinética
15.
Environ Sci Technol ; 51(17): 10005-10011, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28787152

RESUMO

Relationships between total soil or bioaccessible lead (Pb), measured using an in vitro bioaccessibility assay, and children's blood lead levels (BLL) were investigated in an urban neighborhood in Philadelphia, PA, with a history of soil Pb contamination. Soil samples from 38 homes were analyzed to determine whether accounting for the bioaccessible Pb fraction improves statistical relationships with children's BLLs. Total soil Pb concentration ranged from 58 to 2821 mg/kg; the bioaccessible Pb concentration ranged from 47 to 2567 mg/kg. Children's BLLs ranged from 0.3 to 9.8 µg/dL. Hierarchical models were used to compare relationships between total or bioaccessible Pb in soil and children's BLLs. Total soil Pb concentration as the predictor accounted for 23% of the variability in child BLL; bioaccessible soil Pb concentration as the predictor accounted for 26% of BLL variability. A bootstrapping analysis confirmed a significant increase in R2 for the model using bioaccessible soil Pb concentration as the predictor with 99.0% of bootstraps showing a positive increase. Estimated increases of 1.3 µg/dL and 1.5 µg/dL in BLL per 1000 mg/kg Pb in soil were observed for this study area using total and bioaccessible Pb concentrations, respectively. Children's age did not contribute significantly to the prediction of BLLs.


Assuntos
Chumbo/sangue , Poluentes do Solo/análise , Disponibilidade Biológica , Criança , Pré-Escolar , Humanos , Chumbo/análise , Philadelphia , Solo , População Urbana
16.
J Toxicol Environ Health A ; 79(24): 1179-1182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27767405

RESUMO

Lead (Pb) in soil is an important exposure source for children. Thus, determining bioavailability of Pb in soil is critical in evaluating risk and selecting appropriate strategies to minimize exposure. A mouse model was developed to estimate relative bioavailability of Pb in NIST SRM 2710a (Montana 1 Soil). Based on Pb levels in tissues, the mean relative bioavailability of this metal in this soil was 0.5. Estimates of relative bioavailabilities derived from mouse compared favorably with those obtained in juvenile swine. The mouse model is thus an efficient and inexpensive method to obtain estimates of relative bioavailability of soil Pb.


Assuntos
Chumbo/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Disponibilidade Biológica , Monitoramento Ambiental , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Medição de Risco , Distribuição Tecidual
17.
J Toxicol Environ Health A ; 79(4): 165-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27029599

RESUMO

Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data combined from previous investigations that examined the relationship between As IVBA and RBA when IVBA was determined using an extraction of soil in 0.4 M glycine at pH 1.5. Data used to develop the model included paired IVBA and RBA estimates for 83 soils from various types of sites such as mining, smelting, and pesticide or herbicide application. The following linear regression model accounted for 87% of the observed variance in RBA (R(2) = .87): RBA(%) = 0.79 × IVBA(%) + 3. This regression model is more robust than previously reported models because it includes a larger number of soil samples, and also accounts for variability in RBA and IVBA measurements made on samples collected from sites contaminated with different As sources and conducted in different labs that have utilized different experimental models for estimating RBA.


Assuntos
Arsênio/farmacocinética , Bioensaio/métodos , Modelos Lineares , Modelos Biológicos , Poluentes do Solo/farmacocinética , Disponibilidade Biológica
18.
Environ Sci Technol ; 49(10): 6312-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25965337

RESUMO

In vitro bioaccessibility (IVBA) assays estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve accuracy in human exposure assessments. Previous studies correlating soil As IVBA with RBA have been limited by the use of few soil types and sources of As, and the predictive value of As IVBA has not been validated using an independent set of As-contaminated soils. In this study, a robust linear model was developed to predict As RBA in mice using IVBA, and the predictive capability of the model was independently validated using a unique set of As-contaminated soils. Forty As-contaminated soils varying in soil type and contaminant source were included in this study, with 31 soils used for initial model development and nine soils used for independent model validation. The initial model reliably predicted As RBA values in the independent data set, with a mean As RBA prediction error of 5.4%. Following validation, 40 soils were used for final model development, resulting in a linear model with the equation RBA = 0.65 × IVBA + 7.8 and an R(2) of 0.81. The in vivo-in vitro correlation and independent data validation presented provide critical verification necessary for regulatory acceptance in human health risk assessment.


Assuntos
Arsênio/farmacocinética , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/farmacocinética , Animais , Disponibilidade Biológica , Feminino , Camundongos , Camundongos Endogâmicos C57BL
19.
Artigo em Inglês | MEDLINE | ID: mdl-38548929

RESUMO

BACKGROUND: Lead (Pb) in house dust contributes significantly to blood lead levels (BLLs) in children which may result in dire health consequences. Assessment of house dust Pb in the United States, relationships with Pb in soil and paint, and residential factors influencing Pb concentrations are essential to probing drivers of house dust Pb exposure. OBJECTIVE: Pb concentrations in vacuum-collected house dust are characterized across 346 homes participating in the American Health Homes Survey II (AHHS II), a US survey (2018-2019) evaluating residential Pb hazards. Connections between house dust Pb and soil Pb, paint Pb, and other residential factors are evaluated, and dust Pb concentration data are compared to paired loading data to understand Pb hazard standard implications. RESULTS: Mean and median vacuum dust Pb concentrations were 124 µg Pb g-1 and 34 µg Pb g-1, respectively. Vacuum-collected dust concentrations and dust wipe Pb loading rates were significantly correlated within homes (α < 0.001; r ≥ 0.4). At least one wipe sample exceeded current house dust Pb loading hazard standards (10 µg ft-2 or 100 µg Pb ft-2 for floors and windowsills, respectively) in 75 of 346 homes (22%). House dust Pb concentrations were correlated with soil Pb (r = 0.64) and Pb paint (r = 0.57). Soil Pb and paint Pb were also correlated (r = 0.6). IMPACT: The AHHS II provides a window into the current state of Pb in and around residences. We evaluated the relationship between house dust Pb concentrations and two common residential Pb sources: soil and Pb-based paint. Here, we identify relationships between Pb concentrations from vacuum-collected dust and paired Pb wipe loading data, enabling dust Pb concentrations to be evaluated in the context of hazard standards. This relationship, along with direct ties to Pb in soil and interior/exterior paint, provides a comprehensive assessment of dust Pb for US homes, crucial for formulating effective strategies to mitigate Pb exposure risks in households.

20.
J Toxicol Environ Health A ; 76(13): 815-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24028666

RESUMO

A mouse assay for measuring the relative bioavailability (RBA) of arsenic (As) in soil was developed. In this study, results are presented of RBA assays of 16 soils, including multiple assays of the same soils, which provide a quantitative assessment of reproducibility of mouse assay results, as well as a comparison of results from the mouse assay with results from a swine and monkey assay applied to the same test soils. The mouse assay is highly reproducible; three repeated assays on the same soils yielded RBA estimates that ranged from 1 to 3% of the group mean. The mouse, monkey, and swine models yielded similar results for some, but not all, test materials. RBA estimates for identical soils (nine test soils and three standard reference materials [SRM]) assayed in mice and swine were significantly correlated (r = 0.70). Swine RBA estimates for 6 of the 12 test materials were higher than those from the mouse assay. RBA estimates for three standard reference materials (SRM) were not statistically different (mouse/swine ratio ranged from 0.86-1). When four test soils from the same orchard were assessed in the mouse, monkey, and swine assays, the mean soil As RBA were not statistically different. Mouse and swine models predicted similar steady state urinary excretion fractions (UEF) for As of 62 and 74%, respectively, during repeated ingestion doses of sodium arsenate, the water-soluble As form used as the reference in the calculation of RBA. In the mouse assay, the UEF for water soluble As(V) (sodium arsenate) and As(III) (sodium [meta] arsenite) were 62% and 66%, respectively, suggesting similar absolute bioavailabilities for the two As species. The mouse assay can serve as a highly cost-effective alternative or supplement to monkey and swine assays for improving As risk assessments by providing site-specific assessments of RBA of As in soils.


Assuntos
Arseniatos/farmacocinética , Arsenitos/farmacocinética , Bioensaio/métodos , Compostos de Sódio/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Arseniatos/análise , Arsenitos/análise , Bioensaio/economia , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Estudos de Viabilidade , Feminino , Haplorrinos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Medição de Risco , Compostos de Sódio/análise , Solo/química , Poluentes do Solo/análise , Especificidade da Espécie , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA