Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Commun Signal ; 19(1): 119, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922569

RESUMO

BACKGROUND: Protein disulfide isomerase A3 (PDIA3, also named GRP58, ER-60, ERp57) is conserved across species and mediates protein folding in the endoplasmic reticulum. PDIA3 is, reportedly, a chaperone for STAT3. However, the role of PDIA3 in regulating mitochondrial bioenergetics and STAT3 phosphorylation at serine 727 (S727) has not been described. METHODS: Mitochondrial respiration was compared in immortalized human cerebral microvascular cells (CMEC) wild type or null for PDIA3 and in whole organism C. Elegans WT or null for pdi-3 (worm homologue). Mitochondrial morphology and cell signaling pathways in PDIA3-/- and WT cells were assessed. PDIA3-/- cells were subjected to oxygen-glucose deprivation (OGD) to determine the effects of PDIA3 on cell survival after injury. RESULTS: We show that PDIA3 gene deletion using CRISPR-Cas9 in cultured CMECs leads to an increase in mitochondrial bioenergetic function. In C. elegans, gene deletion or RNAi knockdown of pdi-3 also increased respiratory rates, confirming a conserved role for this gene in regulating mitochondrial bioenergetics. The PDIA3-/- bioenergetic phenotype was reversed by overexpression of WT PDIA3 in cultured PDIA3-/- CMECs. PDIA3-/- and siRNA knockdown caused an increase in phosphorylation of the S727 residue of STAT3, which is known to promote mitochondrial bioenergetic function. Increased respiration in PDIA3-/- CMECs was reversed by a STAT3 inhibitor. In PDIA3-/- CMECs, mitochondrial membrane potential and reactive oxygen species production, but not mitochondrial mass, was increased, suggesting an increased mitochondrial bioenergetic capacity. Finally, PDIA3-/- CMECs were more resistant to oxygen-glucose deprivation, while STAT3 inhibition reduced the protective effect. CONCLUSIONS: We have discovered a novel role for PDIA3 in suppressing mitochondrial bioenergetic function by inhibiting STAT3 S727 phosphorylation.


Assuntos
Células Endoteliais
2.
Phys Rev Lett ; 113(2): 022502, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062169

RESUMO

We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3)He(↑)(e,e')X on a polarized (3)He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be nonzero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.72 GeV, which is nonzero at the 2.89σ level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.

3.
4.
Phys Rev Lett ; 107(7): 072003, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902386

RESUMO

We report the first measurement of target single spin asymmetries in the semi-inclusive (3)He(e,e'π(±))X reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0.16 < x < 0.35 with 1.4 < Q(2) < 2.7 GeV(2). The Collins and Sivers moments were extracted from the azimuthal angular dependence of the measured asymmetries. The π(±) Collins moments for (3)He are consistent with zero, except for the π(+) moment at x = 0.35, which deviates from zero by 2.3σ. While the π(-) Sivers moments are consistent with zero, the π(+) Sivers moments favor negative values. The neutron results were extracted using the nucleon effective polarization and measured cross section ratios of proton to (3)He, and are largely consistent with the predictions of phenomenological fits and quark model calculations.

5.
Mol Neurodegener ; 10: 27, 2015 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-26159703

RESUMO

BACKGROUND: Alzheimer's disease (AD) underlies dementia for millions of people worldwide, and its occurrence is set to double in the next 20 years. Currently, approved drugs for treating AD only marginally ameliorate cognitive deficits, and provide limited symptomatic relief, while newer substances under therapeutic development are potentially years away from benefiting patients. Melatonin (MEL) for insomnia has been proven safe with >15 years of over-the-counter access in the US. MEL exerts multiple complementary mechanisms of action against AD in animal models; thus it may be an excellent disease-modifying therapeutic. While presumed to provide neuroprotection via activation of known G-protein-coupled melatonin receptors (MTNRs), some data indicate MEL acts intracellularly to protect mitochondria and neurons by scavenging reactive oxygen species and reducing free radical formation. We examined whether genetic deletion of MTNRs abolishes MEL's neuroprotective actions in the AßPP(swe)/PSEN1dE9 mouse model of AD (2xAD). Beginning at 4 months of age, both AD and control mice either with or without both MTNRs were administered either MEL or vehicle in drinking water for 12 months. RESULTS: Behavioral and cognitive assessments of 15-month-old AD mice revealed receptor-dependent effects of MEL on spatial learning and memory (Barnes maze, Morris Water Maze), but receptor-independent neuroprotective actions of MEL on non-spatial cognitive performance (Novel Object Recognition Test). Similarly, amyloid plaque loads in hippocampus and frontal cortex, as well as plasma Aß1-42 levels, were significantly reduced by MEL in a receptor-independent manner, in contrast to MEL's efficacy in reducing cortical antioxidant gene expression (Catalase, SOD1, Glutathione Peroxidase-1, Nrf2) only when receptors were present. Increased cytochrome c oxidase activity was seen in 16 mo AD mice as compared to non-AD control mice. This increase was completely prevented by MEL treatment of 2xAD/MTNR+ mice, but only partially prevented in 2xAD/MTNR- mice, consistent with mixed receptor-dependent and independent effects of MEL on this measure of mitochondrial function. CONCLUSIONS: These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores de Melatonina/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/genética , Animais , Ansiedade/genética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Comportamento Exploratório , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/genética , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mutação , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/sangue , Placa Amiloide/patologia , Presenilina-1/genética , Receptores de Melatonina/deficiência , Receptores de Melatonina/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Glutationa Peroxidase GPX1
6.
Neuroscience ; 185: 135-49, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21514369

RESUMO

We have recently reported that long-term exposure to high frequency electromagnetic field (EMF) treatment not only prevents or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, but also improves memory in normal mice. To elucidate the possible mechanism(s) for these EMF-induced cognitive benefits, brain mitochondrial function was evaluated in aged Tg mice and non-transgenic (NT) littermates following 1 month of daily EMF exposure. In Tg mice, EMF treatment enhanced brain mitochondrial function by 50-150% across six established measures, being greatest in cognitively-important brain areas (e.g. cerebral cortex and hippocampus). EMF treatment also increased brain mitochondrial function in normal aged mice, although the enhancement was not as robust and less widespread compared to that of Tg mice. The EMF-induced enhancement of brain mitochondrial function in Tg mice was accompanied by 5-10 fold increases in soluble Aß1-40 within the same mitochondrial preparations. These increases in mitochondrial soluble amyloid-ß peptide (Aß) were apparently due to the ability of EMF treatment to disaggregate Aß oligomers, which are believed to be the form of Aß causative to mitochondrial dysfunction in Alzheimer's disease (AD). Finally, the EMF-induced mitochondrial enhancement in both Tg and normal mice occurred through non-thermal effects because brain temperatures were either stable or decreased during/after EMF treatment. These results collectively suggest that brain mitochondrial enhancement may be a primary mechanism through which EMF treatment provides cognitive benefit to both Tg and NT mice. Especially in the context that mitochondrial dysfunction is an early and prominent characteristic of Alzheimer's pathogenesis, EMF treatment could have profound value in the disease's prevention and treatment through intervention at the mitochondrial level.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/ultraestrutura , Magnetoterapia/métodos , Mitocôndrias/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Temperatura Corporal/genética , Encéfalo/patologia , Encéfalo/efeitos da radiação , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética , Espécies Reativas de Oxigênio/metabolismo
7.
J Biol Chem ; 272(34): 21104-12, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9261114

RESUMO

Yeast mitochondria (Saccharomyces cerevisiae) contain a permeability transition pore which is regulated differently than the pore in mammalian mitochondria. In a mannitol medium containing 10 mM Pi and ethanol (oxidizable substrate), yeast mitochondria accumulate large amounts of Ca2+ (>400 nmol/mg of protein) upon the addition of an electrophoretic Ca2+ ionophore (ETH129). Pore opening does not occur following Ca2+ uptake, even though ruthenium red-inhibited rat liver mitochondria undergo rapid pore opening under analogous conditions. However, a pore does arise in yeast mitochondria when Ca2+ and Pi are not present, as monitored by swelling, ultrastructure, and matrix solute release. Pore opening is slow unless a respiratory substrate is provided (ethanol or NADH) but also occurs rapidly in response to ATP (2 mM) when oligomycin is present. Pi and ADP inhibit pore opening (EC50 approximately 1 and 4 mM, respectively), however, cyclosporin A (7 microg/ml), oligomycin (20 microg/ml), or carboxyatractyloside (25 microM) have no effect. The pore arising during respiration is also inhibited by nigericin or uncoupler, indicating that an acidic matrix pH antagonizes the process. Pi also inhibits pore opening by lowering the matrix pH (Pi/OH- antiport). However, inhibition of the ATP-induced pore by Pi is seen in the presence of mersalyl, suggesting a second mechanism of action. Since pore induction by ATP is not sensitive to carboxyatractyloside, ATP appears to act at an external site and Pi may antagonize the interaction. Isoosmotic polyethylene glycol-induced contraction of yeast mitochondria swollen during respiration, or in the presence of ATP, is 50% effective at a solute size of 1.0-1.1 kDa. This suggests that the same pore is induced in both cases and is comparable in size with the permeability transition pore of heart and liver mitochondria.


Assuntos
Cálcio/metabolismo , Ciclosporina/farmacologia , Mitocôndrias/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Etanol/metabolismo , Concentração de Íons de Hidrogênio , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial , Permeabilidade/efeitos dos fármacos , Fosfatos/metabolismo , Ratos
8.
J Biol Chem ; 276(44): 40502-9, 2001 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11457848

RESUMO

The accumulation and retention of Ca(2+) by yeast mitochondria (Saccharomyces cerevisiae) mediated by ionophore ETH 129 occurs with a variable efficiency in different preparations. Ineffective Ca(2+) transport and a depressed membrane potential occur in parallel, are exacerbated in parallel by exogenous free fatty acids, and are corrected in parallel by the addition of bovine serum albumin. Bovine serum albumin is not required to develop a high membrane potential when either Ca(2+) or ETH 129 are absent, and when both are present membrane potential is restored by the addition of EGTA in a concentration-dependent manner. Respiration and swelling data indicate that the permeability transition pore does not open in yeast mitochondria that are treated with Ca(2+) and ETH 129, whereas fatty acid concentration studies and the inaction of carboxyatractyloside indicate that fatty acid-derived uncoupling does not underlie the other observations. It is concluded that yeast mitochondria contain a previously unrecognized Ca(2+):2H(+) antiporter that is highly active in the presence of free fatty acids and leads to a futile cycle of Ca(2+) accumulation and release when exogenous Ca(2+) and ETH 129 are available. It is also shown that isolated yeast mitochondria degrade their phospholipids at a relatively rapid rate. The activity responsible is also previously unrecognized. It is Ca(2+)-independent, little affected by the presence or absence of a respiratory substrate, and leads to the hydrolysis of ester linkages at both the sn-1 and sn-2 positions of the glycerophospholipids. The products of this activity, through their actions on the antiporter, explain the variable behavior of yeast mitochondria treated with Ca(2+) plus ETH 129.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/fisiologia , Hidrogênio/metabolismo , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Transporte de Íons
9.
IUBMB Life ; 52(3-5): 93-100, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11798041

RESUMO

Electron tomography indicates that the mitochondrial inner membrane is not normally comprised of baffle-like folds as depicted in textbooks. In actuality, this membrane is pleomorphic, with narrow tubular regions connecting the internal compartments (cristae) to each other and to the membrane periphery. The membrane topologies observed in condensed (matrix contracted) and orthodox (matrix expanded) mitochondria cannot be interconverted by passive folding and unfolding. Instead, transitions between these morphological states likely involve membrane fusion and fission. Formation of tubular junctions in the inner membrane appears to be energetically favored, because they form spontaneously in yeast mitochondria following large-amplitude swelling and recontraction. However, aberrant, unattached, vesicular cristae are also observed in these mitochondria, suggesting that formation of cristae junctions depends on factors (such as the distribution of key proteins and/or lipids) that are disrupted during extreme swelling. Computer modeling studies using the "Virtual Cell" program suggest that the shape of the inner membrane can influence mitochondrial function. Simulations indicate that narrow cristae junctions restrict diffusion between intracristal and external compartments, causing depletion of ADP and decreased ATP output inside the cristae.


Assuntos
Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Animais , Metabolismo Energético , Humanos , Imageamento Tridimensional , Fusão de Membrana , Dilatação Mitocondrial , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA