Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Neurosci ; 44(4-5): 363-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100588

RESUMO

Identifying the hemodynamic range that best supports cerebral perfusion using near infrared spectroscopy (NIRS) autoregulation monitoring is a potential physiologic marker for neonatal hypoxic-ischemic encephalopathy (HIE) during therapeutic hypothermia. However, an optimal autoregulation monitoring algorithm has not been identified for neonatal clinical medicine. We tested whether the hemoglobin volume phase (HVP), hemoglobin volume (HVx), and pressure passivity index (PPI) identify changes in autoregulation that are associated with brain injury on MRI or death. The HVP measures the phase difference between a NIRS metric of cerebral blood volume, the total hemoglobin (THb), and mean arterial blood pressure (MAP) at the frequency of maximum coherence. The HVx is the correlation coefficient between MAP and THb. The PPI is the percentage of coherent MAP-DHb (difference between oxygenated and deoxygenated hemoglobin, a marker of cerebral blood flow) epochs in a chosen time period. Neonates cooled for HIE were prospectively enrolled in an observational study in two neonatal intensive care units. In analyses adjusted for study site and encephalopathy level, all indices detected relationships between poor autoregulation in the first 6 h after rewarming with a higher injury score on MRI. Only HVx and PPI during hypothermia and the PPI during rewarming identified autoregulatory dysfunction associated with a poor outcome independent of study site and encephalopathy level. Our findings suggest that the accuracy of mathematical autoregulation algorithms in detecting the risk of brain injury or death may depend on temperature and postnatal age. Extending autoregulation monitoring beyond the standard 72 h of therapeutic hypothermia may serve as a method to provide personalized care by assessing the need for and efficacy of future therapies after the hypothermia treatment phase.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Lesões Encefálicas/terapia , Circulação Cerebrovascular/fisiologia , Hemoglobinas , Homeostase/fisiologia , Humanos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido
2.
Br J Anaesth ; 129(1): 22-32, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597624

RESUMO

BACKGROUND: Cardiac surgery studies have established the clinical relevance of personalised arterial blood pressure management based on cerebral autoregulation. However, variabilities exist in autoregulation evaluation. We compared the association of several cerebral autoregulation metrics, calculated using different methods, with outcomes after cardiac surgery. METHODS: Autoregulation was measured during cardiac surgery in 240 patients. Mean flow index and cerebral oximetry index were calculated as Pearson's correlations between mean arterial pressure (MAP) and transcranial Doppler blood flow velocity or near-infrared spectroscopy signals. The lower limit of autoregulation and optimal mean arterial pressure were identified using mean flow index and cerebral oximetry index. Regression models were used to examine associations of area under curve and duration of mean arterial pressure below thresholds with stroke, acute kidney injury (AKI), and major morbidity and mortality. RESULTS: Both mean flow index and cerebral oximetry index identified the cerebral lower limit of autoregulation below which MAP was associated with a higher incidence of AKI and major morbidity and mortality. Based on magnitude and significance of the estimates in adjusted models, the area under curve of MAP < lower limit of autoregulation had the strongest association with AKI and major morbidity and mortality. The odds ratio for area under the curve of MAP < lower limit of autoregulation was 1.05 (95% confidence interval, 1.01-1.09), meaning every 1 mm Hg h increase of area under the curve was associated with an average increase in the odds of AKI by 5%. CONCLUSIONS: For cardiac surgery patients, area under curve of MAP < lower limit of autoregulation using mean flow index or cerebral oximetry index had the strongest association with AKI and major morbidity and mortality. Trials are necessary to evaluate this target for MAP management.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/etiologia , Benchmarking , Pressão Sanguínea/fisiologia , Ponte Cardiopulmonar/métodos , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Humanos , Monitorização Intraoperatória/métodos , Morbidade , Oximetria/métodos
3.
Pediatr Cardiol ; 43(7): 1624-1630, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35426499

RESUMO

Congenital heart disease (CHD) is a common birth defect in the United States. CHD infants are more likely to have smaller head circumference and neurodevelopmental delays; however, the cause is unknown. Altered cerebrovascular hemodynamics may contribute to neurologic abnormalities, such as smaller head circumference, thus we created a novel Cerebrovascular Stability Index (CSI), as a surrogate for cerebral autoregulation. We hypothesized that CHD infants would have an association between CSI and head circumference. We performed a prospective, longitudinal study in CHD infants and healthy controls. We measured CSI and head circumference at 4 time points (newborn, 3, 6, 9 months). We calculated CSI by subtracting the average 2-min sitting from supine cerebral oxygenation (rcSO2) over three consecutive tilts (0-90°), then averaged the change score for each age. Linear regressions quantified the relationship between CSI and head circumference. We performed 177 assessments in total (80 healthy controls, 97 CHD infants). The average head circumference was smaller in CHD infants (39.2 cm) compared to healthy controls (41.6 cm) (p < 0.001) and head circumference increased by 0.27 cm as CSI improved in the sample (p = 0.04) overall when combining all time points. Similarly, head circumference increased by 0.32 cm as CSI improved among CHD infants (p = 0.04). We found CSI significantly associated with head circumference in our sample overall and CHD infants alone, which suggests that impaired CSI may affect brain size in CHD infants. Future studies are needed to better understand the mechanism of interaction between CSI and brain growth.


Assuntos
Cardiopatias Congênitas , Cabeça , Cardiopatias Congênitas/complicações , Hemodinâmica , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Estudos Prospectivos
4.
Crit Care Med ; 49(4): 650-660, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278074

RESUMO

OBJECTIVES: Monitoring cerebral autoregulation may help identify the lower limit of autoregulation in individual patients. Mean arterial blood pressure below lower limit of autoregulation appears to be a risk factor for postoperative acute kidney injury. Cerebral autoregulation can be monitored in real time using correlation approaches. However, the precise thresholds for different cerebral autoregulation indexes that identify the lower limit of autoregulation are unknown. We identified thresholds for intact autoregulation in patients during cardiopulmonary bypass surgery and examined the relevance of these thresholds to postoperative acute kidney injury. DESIGN: A single-center retrospective analysis. SETTING: Tertiary academic medical center. PATIENTS: Data from 59 patients was used to determine precise cerebral autoregulation thresholds for identification of the lower limit of autoregulation. These thresholds were validated in a larger cohort of 226 patients. METHODS AND MAIN RESULTS: Invasive mean arterial blood pressure, cerebral blood flow velocities, regional cortical oxygen saturation, and total hemoglobin were recorded simultaneously. Three cerebral autoregulation indices were calculated, including mean flow index, cerebral oximetry index, and hemoglobin volume index. Cerebral autoregulation curves for the three indices were plotted, and thresholds for each index were used to generate threshold- and index-specific lower limit of autoregulations. A reference lower limit of autoregulation could be identified in 59 patients by plotting cerebral blood flow velocity against mean arterial blood pressure to generate gold-standard Lassen curves. The lower limit of autoregulations defined at each threshold were compared with the gold-standard lower limit of autoregulation determined from Lassen curves. The results identified the following thresholds: mean flow index (0.45), cerebral oximetry index (0.35), and hemoglobin volume index (0.3). We then calculated the product of magnitude and duration of mean arterial blood pressure less than lower limit of autoregulation in a larger cohort of 226 patients. When using the lower limit of autoregulations identified by the optimal thresholds above, mean arterial blood pressure less than lower limit of autoregulation was greater in patients with acute kidney injury than in those without acute kidney injury. CONCLUSIONS: This study identified thresholds of intact and impaired cerebral autoregulation for three indices and showed that mean arterial blood pressure below lower limit of autoregulation is a risk factor for acute kidney injury after cardiac surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Monitorização Intraoperatória/métodos , Injúria Renal Aguda/diagnóstico , Pressão Arterial/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oximetria/métodos , Estudos Retrospectivos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
5.
Br J Anaesth ; 126(5): 967-974, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33741137

RESUMO

BACKGROUND: Cerebral autoregulation monitoring is a proposed method to monitor perfusion during cardiac surgery. However, limited data exist from the ICU as prior studies have focused on intraoperative measurements. Our objective was to characterise cerebral autoregulation during surgery and early ICU care, and as a secondary analysis to explore associations with delirium. METHODS: In patients undergoing cardiac surgery (n=134), cerebral oximetry values and arterial BP were monitored and recorded until the morning after surgery. A moving Pearson's correlation coefficient between mean arterial proessure (MAP) and near-infrared spectroscopy signals generated the cerebral oximetry index (COx). Three metrics were derived: (1) globally impaired autoregulation, (2) MAP time and duration outside limits of autoregulation (MAP dose), and (3) average COx. Delirium was assessed using the 3-Minute Diagnostic Interview for CAM-defined Delirium (3D-CAM) and the Confusion Assessment Method for the ICU (CAM-ICU). Autoregulation metrics were compared using χ2 and rank-sum tests, and associations with delirium were estimated using regression models, adjusted for age, bypass time, and logEuroSCORE. RESULTS: The prevalence of globally impaired autoregulation was higher in the operating room vs ICU (40% vs 13%, P<0.001). The MAP dose outside limits of autoregulation was similar in the operating room and ICU (median 16.9 mm Hg×h; inter-quartile range [IQR] 10.1-38.8 vs 16.9 mm Hg×h; IQR 5.4-35.1, P=0.20). In exploratory adjusted analyses, globally impaired autoregulation in the ICU, but not the operating room, was associated with delirium. The MAP dose outside limits of autoregulation in the operating room and ICU was also associated with delirium. CONCLUSIONS: Metrics of cerebral autoregulation are altered in the ICU, and may be clinically relevant with respect to delirium. Further studies are needed to investigate these findings and determine possible benefits of autoregulation-based MAP targeting in the ICU.


Assuntos
Pressão Arterial/fisiologia , Procedimentos Cirúrgicos Cardíacos/métodos , Circulação Cerebrovascular/fisiologia , Delírio/fisiopatologia , Idoso , Feminino , Homeostase/fisiologia , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Salas Cirúrgicas , Oximetria
6.
Acta Neurochir Suppl ; 131: 275-278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839857

RESUMO

In traumatic brain injury, longer time spent with a cerebral perfusion pressure (CPP) below the pressure reactivity index (PRx)-derived lower limit of reactivity (LLR) has been shown to be statistically associated with higher mortality. We set out to scrutinise the behaviour of LLR and the methods of its estimation in individual cases by performing retrospective analysis of intracranial pressure (ICP), arterial blood pressure (ABP) and laser Doppler flow (LDF) signals recorded in nine piglets undergoing controlled, terminal hypotension. We focused on the sections of the recordings with stable experimental conditions where a clear breakpoint of LDF/CPP characteristic (LLA) could be identified.In eight of the nine experiments, when CPP underwent a monotonous decrease, the relationship PRx/CPP showed two breakpoints (1 - when PRx starts to rise; 2 - when PRx saturates at PRx > 0.3), with LDF-based LLA sitting between them. LLR (CPP at PRx reaching 0.3 in the error bar chart) was close to the lower LLR breakpoint.In conclusion, when CPP has a monotonous decrease, PRx starts worsening before CPP crosses the LLA. A further decrease in CPP below LLA would cause a decrease in CBF, even if the pressure reactivity is not completely lost. This pattern should be taken into account when PRx is used to detect LLA continuously.


Assuntos
Pressão Intracraniana , Animais , Pressão Arterial , Circulação Cerebrovascular , Homeostase , Estudos Retrospectivos , Suínos
7.
Neonatal Netw ; 40(2): 73-79, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731373

RESUMO

In this review, we describe the near-infrared spectroscopy (NIRS) technology and its clinical use in high-risk neonates in critical care settings. We searched databases (e.g., PubMed, Google Scholar, EBSCOhost) to find studies describing the use of NIRS on critically ill and high-risk neonates. Near-infrared spectroscopy provides continuous noninvasive monitoring of venous oxygen saturation. It uses technology similar to pulse oximetry to measure the oxygen saturation of hemoglobin in a tissue bed to describe the relative delivery and extraction of oxygen. Near-infrared spectroscopy can be a valuable bedside tool to provide clinicians indirect evidence of perfusion. It may prompt early interventions that promote oxygen delivery, which can improve high-risk neonatal outcomes.


Assuntos
Oximetria , Espectroscopia de Luz Próxima ao Infravermelho , Cuidados Críticos , Humanos , Recém-Nascido , Oxigênio
8.
Anesth Analg ; 131(5): 1520-1528, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079875

RESUMO

BACKGROUND: Cerebral blood flow (CBF) is maintained over a range of blood pressures through cerebral autoregulation (CA). Blood pressure outside the range of CA, or impaired autoregulation, is associated with adverse patient outcomes. Regional oxygen saturation (rSO2) derived from near-infrared spectroscopy (NIRS) can be used as a surrogate CBF for determining CA, but existing methods require a long period of time to calculate CA metrics. We have developed a novel method to determine CA using cotrending of mean arterial pressure (MAP) with rSO2that aims to provide an indication of CA state within 1 minute. We sought to determine the performance of the cotrending method by comparing its CA metrics to data derived from transcranial Doppler (TCD) methods. METHODS: Retrospective data collected from 69 patients undergoing cardiac surgery with cardiopulmonary bypass were used to develop a reference lower limit of CA. TCD-MAP data were plotted to determine the reference lower limit of CA. The investigated method to evaluate CA state is based on the assessment of the instantaneous cotrending relationship between MAP and rSO2 signals. The lower limit of autoregulation (LLA) from the cotrending method was compared to the manual reference derived from TCD. Reliability of the cotrending method was assessed as uptime (defined as the percentage of time that the state of autoregulation could be measured) and time to first post. RESULTS: The proposed method demonstrated minimal mean bias (0.22 mmHg) when compared to the TCD reference. The corresponding limits of agreement were found to be 10.79 mmHg (95% confidence interval [CI], 10.09-11.49) and -10.35 mmHg (95% CI, -9.65 to -11.05). Mean uptime was 99.40% (95% CI, 99.34-99.46) and the mean time to first post was 63 seconds (95% CI, 58-71). CONCLUSIONS: The reported cotrending method rapidly provides metrics associated with CA state for patients undergoing cardiac surgery. A major strength of the proposed method is its near real-time feedback on patient CA state, thus allowing for prompt corrective action to be taken by the clinician.


Assuntos
Circulação Cerebrovascular , Homeostase , Monitorização Neurofisiológica Intraoperatória/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Pressão Arterial , Pressão Sanguínea , Ponte Cardiopulmonar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estudos Retrospectivos , Ultrassonografia Doppler Transcraniana
9.
Dev Neurosci ; : 1-13, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048593

RESUMO

INTRODUCTION: The optimal method to detect impairments in cerebrovascular pressure autoregulation in neonates with hypoxic-ischemic encephalopathy (HIE) is unclear. Improving autoregulation monitoring methods would significantly advance neonatal neurocritical care. METHODS: We tested several mathematical algorithms from the frequency and time domains in a piglet model of HIE, hypothermia, and hypotension. We used laser Doppler flowmetry and induced hypotension to delineate the gold standard lower limit of autoregulation (LLA). Receiver operating characteristics curve analyses were used to determine which indices could distinguish blood pressure above the LLA from that below the LLA in each piglet. RESULTS: Phase calculation in the frequency band with maximum coherence, as well as the correlation between mean arterial pressure (MAP) and near-infrared spectroscopy relative total tissue hemoglobin (HbT) or regional oxygen saturation (rSO2), accurately discriminated functional from dysfunctional autoregulation. Neither hypoxia-ischemia nor hypothermia affected the accuracy of these indices. Coherence alone and gain had low diagnostic value relative to phase and correlation. CONCLUSION: Our findings indicate that phase shift is the most accurate component of autoregulation monitoring in the developing brain, and it can be measured using correlation or by calculating phase when coherence is maximal. Phase and correlation autoregulation indices from MAP and rSO2 and vasoreactivity indices from MAP and HbT are accurate metrics that are suitable for clinical HIE studies.

10.
Pediatr Res ; 86(2): 242-246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31003233

RESUMO

BACKGROUND: Cerebrovascular critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow ceases. Preterm ABP is low and close to CrCP. The diastolic closing margin (diastolic ABP minus CrCP) has been associated with intraventricular hemorrhage in preterm infants. CrCP is estimated from middle cerebral artery cerebral blood flow velocity (CBFV) and ABP waveforms. However, these estimations have not been validated due to a lack of gold standard. Direct observation of the CrCP in preterm infants with hypotension is an opportunity to validate synchronously estimated CrCP. METHODS: ABP and CBFV tracings were obtained from 24 extremely low birth weight infants. Recordings where diastolic CBFV was zero were identified. The gold standard CrCP was delineated using piecewise regression of ABP and CBFV values paired by rank ordering and then estimated using a published formula. The measured and estimated values were compared using linear regression and Bland-Altman analysis. RESULTS: Linear regression showed a high degree of correlation between measured and calculated CrCP (r2 = 0.93). CONCLUSIONS: This is the first study to validate a calculated CrCP by comparing it to direct measurements of CrCP from preterm infants when ABP is lower than CrCP.


Assuntos
Pressão Sanguínea , Hemorragia Cerebral/diagnóstico , Circulação Cerebrovascular , Doenças do Prematuro/patologia , Artéria Cerebral Média/patologia , Algoritmos , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Determinação da Pressão Arterial , Hemorragia Cerebral/patologia , Diástole , Feminino , Hemodinâmica , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pressão Intracraniana , Modelos Lineares , Masculino , Perfusão , Análise de Regressão , Ultrassonografia Doppler Transcraniana , Resistência Vascular
11.
J Physiol ; 596(14): 2797-2809, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665012

RESUMO

KEY POINTS: The brain is vulnerable to damage from too little or too much blood flow. A physiological mechanism termed cerebral autoregulation (CA) exists to maintain stable blood flow even if cerebral perfusion pressure (CPP) is changing. A robust method for assessing CA is not yet available. There are still some problems with the traditional measure, the pressure reactivity index (PRx). We introduce a new method, the wavelet transform method (wPRx), to assess CA using data from two sets of controlled hypotension experiments in piglets: one set had artificially manipulated arterial blood pressure (ABP) oscillations; the other group were spontaneous ABP waves. A significant linear relationship was found between wPRx and PRx in both groups, with wPRx providing a more stable result for the spontaneous waves. Although both methods showed similar accuracy in distinguishing intact and impaired CA, it seems that wPRx tends to perform better than PRx, although not significantly so. ABSTRACT: We present a novel method to monitor cerebral autoregulation (CA) using the wavelet transform (WT). The new method is validated against the pressure reactivity index (PRx) in two piglet experiments with controlled hypotension. The first experiment (n = 12) had controlled haemorrhage with artificial stationary arterial blood pressure (ABP) and intracranial pressure (ICP) oscillations induced by sinusoidal slow changes in positive end-expiratory pressure ('PEEP group'). The second experiment (n = 17) had venous balloon inflation during spontaneous, non-stationary ABP and ICP oscillations ('non-PEEP group'). The wavelet transform phase shift (WTP) between ABP and ICP was calculated in the frequency range 0.0067-0.05 Hz. Wavelet semblance, the cosine of WTP, was used to make the values comparable to PRx, and the new index was termed wavelet pressure reactivity index (wPRx). The traditional PRx, the running correlation coefficient between ABP and ICP, was calculated. The result showed a significant linear relationship between wPRx and PRx in the PEEP group (R = 0.88) and non-PEEP group (R = 0.56). In the non-PEEP group, wPRx showed better performance than PRx in distinguishing cerebral perfusion pressure (CPP) above and below the lower limit of autoregulation (LLA). When CPP was decreased below LLA, wPRx increased from 0.43 ± 0.28 to 0.69 ± 0.12 (P = 0.003) while PRx increased from 0.07 ± 0.21 to 0.27 ± 0.37 (P = 0.04). Moreover, wPRx provided a more stable result than PRx (SD of PRx was 0.40 ± 0.07, and SD of wPRx was 0.28 ± 0.11, P = 0.001). Assessment of CA using wavelet-derived phase shift between ABP and ICP is feasible.


Assuntos
Pressão Arterial , Encéfalo/fisiologia , Circulação Cerebrovascular , Homeostase , Monitorização Fisiológica , Análise de Ondaletas , Animais , Pressão Intracraniana , Suínos
12.
Microvasc Res ; 115: 34-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28847705

RESUMO

Understanding cerebral blood flow dynamics is crucial for the care of patients at risk of poor cerebral perfusion. We describe an effective model of cerebral hemodynamics designed to reveal important macroscopic features of cerebral blood flow without having to resolve the detailed microvasculature of the brain. Based on principles of fluid and elastic dynamics and vascular pressure-reactivity, the model quantifies the physical means by which the vasculature executes autoregulatory reflexes. We demonstrate that the frequency response of the proposed model matches experimental measurements and explains the influence of mechanical factors on the autoregulatory performance. Analysis of the model indicates the existence of an optimal mean arterial pressure which minimizes the sensitivity of the flow to changes in perfusion pressure across the frequency spectrum of physiological oscillations. We highlight the simplicity of the model and its potential to improve monitoring of brain perfusion via real-time computational simulations of cerebro- and cardio-vascular interventions.


Assuntos
Pressão Arterial , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Transtornos Cerebrovasculares/fisiopatologia , Simulação por Computador , Homeostase , Humanos , Fluxo Sanguíneo Regional , Fatores de Tempo
13.
Pediatr Res ; 84(5): 602-610, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196311

RESUMO

Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes.


Assuntos
Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Pressão Arterial , Oxigenação por Membrana Extracorpórea , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/fisiopatologia , Monitorização Fisiológica , Espectroscopia de Luz Próxima ao Infravermelho
14.
Pediatr Res ; 84(3): 356-361, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29538363

RESUMO

BACKGROUND: Elevated arterial blood pressure (ABP) is common after superior bidirectional cavopulmonary anastomosis (BCPA). The effects of elevated ABP after BCPA on cerebrovascular hemodynamics are unknown. We sought to determine the relationship between elevated ABP and cerebrovascular autoregulation after BCPA. METHODS: Prospective, observational study on infants with single-ventricle physiology after BCPA surgery. Continuous recordings of mean ABP, mean cavopulmonary artery pressure (PAP), near-infrared spectroscopy measures of cerebral oximetry (regional cerebral oxygen saturation (rSO2)), and relative cerebral blood volume index were obtained from admission to extubation. Autoregulation was measured as hemoglobin volume index (HVx). Physiologic variables, including the HVx, were tested for variance across ABP. RESULTS: Sixteen subjects were included in the study. Elevated ABP post-BCPA was associated with both, elevated PAP (P<0.0001) and positive HVx (dysautoregulation; P<0.0001). No association was observed between ABP and alterations in rSO2. Using piecewise regression, the relationship of PAP to ABP demonstrated a breakpoint at 68 mm Hg (interquartile range (IQR) 62-70 mm Hg). Curve fit of HVx as a function of ABP identified optimal ABP supporting robust autoregulation at a median ABP of 55 mm Hg (IQR 51-64 mm Hg). CONCLUSIONS: Elevated ABP post-BCPA is associated with cerebrovascular dysautoregulation, and elevated PAP. The effects, of prolonged dysautoregulation within this population, require further study.


Assuntos
Anastomose Cirúrgica/efeitos adversos , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Ventrículos do Coração/fisiopatologia , Homeostase , Artéria Pulmonar/fisiopatologia , Determinação da Pressão Arterial , Ventrículos do Coração/cirurgia , Hemodinâmica , Humanos , Lactente , Oximetria , Oxigênio/sangue , Estudos Prospectivos , Artéria Pulmonar/cirurgia , Estudos Retrospectivos
15.
Cardiol Young ; 28(1): 55-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28835309

RESUMO

BACKGROUND: Cerebrovascular reactivity monitoring has been used to identify the lower limit of pressure autoregulation in adult patients with brain injury. We hypothesise that impaired cerebrovascular reactivity and time spent below the lower limit of autoregulation during cardiopulmonary bypass will result in hypoperfusion injuries to the brain detectable by elevation in serum glial fibrillary acidic protein level. METHODS: We designed a multicentre observational pilot study combining concurrent cerebrovascular reactivity and biomarker monitoring during cardiopulmonary bypass. All children undergoing bypass for CHD were eligible. Autoregulation was monitored with the haemoglobin volume index, a moving correlation coefficient between the mean arterial blood pressure and the near-infrared spectroscopy-based trend of cerebral blood volume. Both haemoglobin volume index and glial fibrillary acidic protein data were analysed by phases of bypass. Each patient's autoregulation curve was analysed to identify the lower limit of autoregulation and optimal arterial blood pressure. RESULTS: A total of 57 children had autoregulation and biomarker data for all phases of bypass. The mean baseline haemoglobin volume index was 0.084. Haemoglobin volume index increased with lowering of pressure with 82% demonstrating a lower limit of autoregulation (41±9 mmHg), whereas 100% demonstrated optimal blood pressure (48±11 mmHg). There was a significant association between an individual's peak autoregulation and biomarker values (p=0.01). CONCLUSIONS: Individual, dynamic non-invasive cerebrovascular reactivity monitoring demonstrated transient periods of impairment related to possible silent brain injury. The association between an impaired autoregulation burden and elevation in the serum brain biomarker may identify brain perfusion risk that could result in injury.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Proteína Glial Fibrilar Ácida/sangue , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/cirurgia , Adolescente , Pressão Arterial , Biomarcadores , Velocidade do Fluxo Sanguíneo , Lesões Encefálicas/etiologia , Circulação Cerebrovascular , Criança , Pré-Escolar , Feminino , Homeostase , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Modelos Logísticos , Masculino , Monitorização Intraoperatória , Análise Multivariada , Projetos Piloto , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho , Estados Unidos
16.
PLoS Med ; 14(7): e1002348, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742798

RESUMO

BACKGROUND: After traumatic brain injury (TBI), the ability of cerebral vessels to appropriately react to changes in arterial blood pressure (pressure reactivity) is impaired, leaving patients vulnerable to cerebral hypo- or hyperperfusion. Although, the traditional pressure reactivity index (PRx) has demonstrated that impaired pressure reactivity is associated with poor patient outcome, PRx is sometimes erratic and may not be reliable in various clinical circumstances. Here, we introduce a more robust transform-based wavelet pressure reactivity index (wPRx) and compare its performance with the widely used traditional PRx across 3 areas: its stability and reliability in time, its ability to give an optimal cerebral perfusion pressure (CPPopt) recommendation, and its relationship with patient outcome. METHODS AND FINDINGS: Five hundred and fifteen patients with TBI admitted in Addenbrooke's Hospital, United Kingdom (March 23rd, 2003 through December 9th, 2014), with continuous monitoring of arterial blood pressure (ABP) and intracranial pressure (ICP), were retrospectively analyzed to calculate the traditional PRx and a novel wavelet transform-based wPRx. wPRx was calculated by taking the cosine of the wavelet transform phase-shift between ABP and ICP. A time trend of CPPopt was calculated using an automated curve-fitting method that determined the cerebral perfusion pressure (CPP) at which the pressure reactivity (PRx or wPRx) was most efficient (CPPopt_PRx and CPPopt_wPRx, respectively). There was a significantly positive relationship between PRx and wPRx (r = 0.73), and wavelet wPRx was more reliable in time (ratio of between-hour variance to total variance, wPRx 0.957 ± 0.0032 versus PRx and 0.949 ± 0.047 for PRx, p = 0.002). The 2-hour interval standard deviation of wPRx (0.19 ± 0.07) was smaller than that of PRx (0.30 ± 0.13, p < 0.001). wPRx performed better in distinguishing between mortality and survival (the area under the receiver operating characteristic [ROC] curve [AUROC] for wPRx was 0.73 versus 0.66 for PRx, p = 0.003). The mean difference between the patients' CPP and their CPPopt was related to outcome for both calculation methods. There was a good relationship between the 2 CPPopts (r = 0.814, p < 0.001). CPPopt_wPRx was more stable than CPPopt_PRx (within patient standard deviation 7.05 ± 3.78 versus 8.45 ± 2.90; p < 0.001). Key limitations include that this study is a retrospective analysis and only compared wPRx with PRx in the cohort of patients with TBI. Prior prospective validation is required to better assess clinical utility of this approach. CONCLUSIONS: wPRx offers several advantages to the traditional PRx: it is more stable in time, it yields a more consistent CPPopt recommendation, and, importantly, it has a stronger relationship with patient outcome. The clinical utility of wPRx should be explored in prospective studies of critically injured neurological patients.


Assuntos
Determinação da Pressão Arterial/métodos , Lesões Encefálicas Traumáticas/diagnóstico , Pressão Intracraniana , Monitorização Fisiológica/métodos , Análise de Ondaletas , Adulto , Determinação da Pressão Arterial/instrumentação , Inglaterra , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
17.
Pediatr Crit Care Med ; 18(1): 44-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27755397

RESUMO

OBJECTIVE: We evaluated ST-segment monitoring to detect clinical decompensation in infants with single ventricle anatomy. We proposed a signal processing algorithm for ST-segment instability and hypothesized that instability is associated with cardiopulmonary arrests. DESIGN: Retrospective, observational study. SETTING: Tertiary children's hospital 21-bed cardiovascular ICU and 36-bed step-down unit. PATIENTS: Twenty single ventricle infants who received stage 1 palliation surgery between January 2013 and January 2014. Twenty rapid response events resulting in cardiopulmonary arrests (arrest group) were recorded in 13 subjects, and nine subjects had no interstage cardiopulmonary arrest (control group). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Arrest data were collected over the 4-hour time window prior to cardiopulmonary arrest. Control data were collected from subjects with no interstage arrest using the 4-hour time window prior to cardiovascular ICU discharge. A paired subgroup analysis was performed comparing subject 4-hour windows prior to arrest (prearrest group) with 4-hour windows prior to discharge (postarrest group). Raw values of ST segments were compared between groups. A 3D ST-segment vector was created using three quasi-orthogonal leads (II, aVL, and V5). Magnitude and instability of this continuous vector were compared between groups. There was no significant difference in mean unprocessed ST-segment values in the arrest and control groups. Utilizing signal processing, there was an increase in the ST-vector magnitude (p = 0.02) and instability (p = 0.008) in the arrest group. In the paired subgroup analysis, there was an increase in the ST-vector magnitude (p = 0.05) and instability (p = 0.05) in the prearrest state compared with the postarrest state prior to discharge. CONCLUSIONS: In single ventricle patients, increased ST instability and magnitude were associated with rapid response events that required intervention for cardiopulmonary arrest, whereas conventional ST-segment monitoring did not differentiate an arrest from control state.


Assuntos
Algoritmos , Técnicas de Apoio para a Decisão , Eletrocardiografia/métodos , Parada Cardíaca/diagnóstico , Ventrículos do Coração/anormalidades , Síndrome do Coração Esquerdo Hipoplásico/complicações , Feminino , Parada Cardíaca/etiologia , Parada Cardíaca/fisiopatologia , Humanos , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Lactente , Recém-Nascido , Masculino , Assistência Perioperatória/métodos , Estudos Retrospectivos
18.
Childs Nerv Syst ; 33(10): 1735-1744, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29149389

RESUMO

BACKGROUND: Children who survive acute traumatic brain injury are at risk of death from subsequent brain swelling and secondary injury. Strict physiologic management in the ICU after traumatic brain injury is believed to be key to survival, and cerebral perfusion pressure is a prominent aspect of post brain injury care. However, optimal cerebral perfusion pressure targets for children are not known. Autoregulation monitoring has been used to delineate individualized optimal perfusion pressures for patients with traumatic brain injury. The methods to do so are diverse, confusing, and not universally validated. METHODS: In this manuscript, we discuss the history of autoregulation monitoring, outline and categorize the methods used to measure autoregulation, and review the available validation data for methods used to monitor autoregulation. CONCLUSIONS: Impaired autoregulation after traumatic brain injury is associated with a poor prognosis. Observational data suggests that optimal neurologic outcome and survival are associated with optimal perfusion pressure defined by autoregulation monitoring. No randomized, controlled, interventional data is available to assess autoregulation monitoring after pediatric traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Homeostase/fisiologia , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Monitorização Fisiológica
19.
Paediatr Anaesth ; 27(9): 911-917, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28719038

RESUMO

BACKGROUND: Clinical studies measuring cerebral blood flow in infants during deep hypothermia have demonstrated diminished cerebrovascular pressure autoregulation. The coexistence of hypotension in these cohorts confounds the conclusion that deep hypothermia impairs cerebrovascular pressure autoregulation. AIM: We sought to compare the lower limit of autoregulation and the static rate of autoregulation between normothermic and hypothermic piglets. METHODS: Twenty anesthetized neonatal piglets (5-7 days old; 10 normothermic and 10 hypothermic to 20°C) had continuous measurements of cortical red cell flux using laser Doppler flowmetry, while hemorrhagic hypotension was induced without cardiopulmonary bypass. Lower limit of autoregulation was determined for each subject using piecewise regression and SRoR was determined above and below each lower limit of autoregulation as (%change cerebrovascular resistance/%change cerebral perfusion pressure). RESULTS: The estimated difference in lower limit of autoregulation was 1.4 mm Hg (lower in the hypothermic piglets; 95% C.I. -10 to 14 mm Hg; P=0.6). The median lower limit of autoregulation in the normothermic group was 39 mm Hg [IQR 38-51] vs 35 mm Hg [31-50] in the hypothermic group. Intact steady-state pressure autoregulation was defined as static rate of autoregulation >0.5 and was demonstrated in all normothermic subjects (static rate of autoregulation=0.72 [0.65-0.87]) and in 9/10 of the hypothermic subjects (static rate of autoregulation=0.65 [0.52-0.87]). This difference in static rate of autoregulation of 0.06 (95% C.I. -0.3 to 0.1) was not significant (P=0.4). CONCLUSION: Intact steady-state cerebrovascular pressure autoregulation is demonstrated in a swine model of profound hypothermia. Lower limit of autoregulation and static rate of autoregulation were similar in hypothermic and normothermic subjects.


Assuntos
Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Hipotermia Induzida , Animais , Animais Recém-Nascidos , Velocidade do Fluxo Sanguíneo/fisiologia , Fluxometria por Laser-Doppler , Modelos Animais , Suínos
20.
Paediatr Anaesth ; 27(9): 905-910, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28653463

RESUMO

BACKGROUND: Autoregulation monitoring has been proposed as a means to identify optimal arterial blood pressure goals during cardiopulmonary bypass, but it has been observed that cerebral blood flow is pressure passive during hypothermic bypass. When neonates cooled during cardiopulmonary bypass are managed with vasodilators and controlled hypotension, it is not clear whether hypothermia or hypotension were the cause of impaired autoregulation. AIM: We sought to measure the effect of both arterial blood pressure and hypothermia on autoregulation in a cohort of infants cooled for bypass, hypothesizing a collinear relationship between hypothermia, hypotension, and dysautoregulation. METHODS: Cardiopulmonary bypass was performed on 72 infants at Texas Children's Hospital during 2015 and 2016 with automated physiologic data capture, including arterial blood pressure, nasopharyngeal temperature, cerebral oximetry, and a cerebral blood volume index derived from near infrared spectroscopy. Cooling to 18°C, 24°C, and 30°C was performed on 33, 12, and 22 subjects, respectively. The hemoglobin volume index was calculated as a moving correlation coefficient between mean arterial blood pressure and the cerebral blood volume index. Positive values of the hemoglobin volume index indicate impaired autoregulation. Relationships between variables were assessed utilizing a generalized estimating equation approach. RESULTS: Hypothermia was associated with hypotension, dysautoregulation, and increased cerebral oximetry. Comparing the baseline temperature of 36°C with 18°C, arterial blood pressure was 44 mm Hg (39-52) vs 25 mm Hg (21-31); the hemoglobin volume index was 0.0 (-0.02 to 0.004) vs 0.5 (0.4-0.7) and cerebral oximetry was 59% (57-61) vs 88% (80-92) (Median, 95% CI of median; P<.0001 for all three associations by linear regression with generalized estimation of equations with data from all temperatures measured). CONCLUSIONS: Arterial blood pressure, temperature, and cerebral autoregulation were collinear in this cohort. The conclusion that hypothermia causes impaired autoregulation is thus confounded. The effect of temperature on autoregulation should be delineated before clinical deployment of autoregulation monitors to prevent erroneous determination of optimal arterial blood pressure. Showing the effect of temperature on autoregulation will require a normotensive hypothermic model.


Assuntos
Ponte Cardiopulmonar , Circulação Cerebrovascular/fisiologia , Homeostase , Hipotermia Induzida , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea , Feminino , Humanos , Recém-Nascido , Masculino , Monitorização Intraoperatória/métodos , Estudos Retrospectivos , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA