Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200558

RESUMO

BACKGROUND: Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS: Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS: We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION: These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.


Assuntos
Corioamnionite , Nascimento Prematuro , Recém-Nascido , Feminino , Lactente , Animais , Humanos , Gravidez , Proteínas Hedgehog , Macaca mulatta , Escherichia coli , Recém-Nascido Prematuro , Cerebelo , RNA Nuclear Pequeno
2.
FASEB J ; 37(12): e23283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983957

RESUMO

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Microglia/metabolismo
3.
Brain Behav Immun ; 116: 269-285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142915

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Microglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Traumatismos da Medula Espinal/metabolismo
4.
Cell Mol Neurobiol ; 43(3): 925-950, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35604578

RESUMO

Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.


Assuntos
Traumatismos da Medula Espinal , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo , Microglia/metabolismo , Macrófagos/patologia , Medula Espinal/metabolismo
5.
J Neuroinflammation ; 18(1): 310, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34965880

RESUMO

BACKGROUND: Mechanical ventilation of preterm newborns causes lung injury and is associated with poor neurodevelopmental outcomes. However, the mechanistic links between ventilation-induced lung injury (VILI) and brain injury is not well defined. Since circulating extracellular vesicles (EVs) are known to link distant organs by transferring their cargos, we hypothesized that EVs mediate inflammatory brain injury associated with VILI. METHODS: Neonatal rats were mechanically ventilated with low (10 mL/kg) or high (25 mL/kg) tidal volume for 1 h on post-natal day 7 followed by recovery for 2 weeks. Exosomes were isolated from the plasma of these rats and adoptively transferred into normal newborn rats. We assessed the effect of mechanical ventilation or exosome transfer on brain inflammation and activation of the pyroptosis pathway by western blot and histology. RESULTS: Injurious mechanical ventilation induced similar markers of inflammation and pyroptosis, such as increased IL-1ß and activated caspase-1/gasdermin D (GSDMD) in both lung and brain, in addition to inducing microglial activation and cell death in the brain. Isolated EVs were enriched for the exosomal markers CD9 and CD81, suggesting enrichment for exosomes. EVs isolated from neonatal rats with VILI had increased caspase-1 but not GSDMD. Adoptive transfer of these EVs led to neuroinflammation with microglial activation and activation of caspase-1 and GSDMD in the brain similar to that observed in neonatal rats that were mechanically ventilated. CONCLUSIONS: These findings suggest that circulating EVs can contribute to the brain injury and poor neurodevelopmental outcomes in preterm infants with VILI through activation of GSDMD.


Assuntos
Encéfalo/patologia , Vesículas Extracelulares/patologia , Piroptose/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Animais , Animais Recém-Nascidos , Caspase 1/sangue , Exossomos/patologia , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-1beta/sangue , Masculino , Proteínas de Ligação a Fosfato/sangue , Proteínas Citotóxicas Formadoras de Poros/sangue , Gravidez , Ratos , Ratos Sprague-Dawley , Respiração Artificial , Transdução de Sinais
6.
Neurobiol Dis ; 134: 104674, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31731043

RESUMO

Remyelination failure is a crucial component of disease progression in the autoimmune demyelinating disease Multiple Sclerosis (MS). The regenerative capacity of oligodendrocyte progenitor cells (OPCs) to replace myelinating oligodendrocytes is likely influenced by many aspects of the lesion environment including inflammatory signaling and extracellular matrix (ECM) deposition. These features of MS lesions are typically attributed to infiltrating leukocytes and reactive astrocytes. Here we demonstrate that fibroblasts also contribute to the inhibitory environment in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Using Col1α1GFP transgenic mice, we show that perivascular fibroblasts are activated in the spinal cord at EAE onset, and infiltrate the parenchyma by the peak of behavioral deficits where they are closely associated with areas of demyelination, myeloid cell accumulation, and ECM deposition. We further show that both fibroblast conditioned media and fibroblast ECM inhibit the differentiation of OPCs into mature oligodendrocytes. Taken together, our results indicate that the fibrotic scar is a major component of EAE pathology that leads to an inhibitory environment for remyelination, thus raising the possibility that anti-fibrotic mechanisms may serve as novel therapeutic targets for MS.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental/patologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Medula Espinal/patologia , Animais , Fibroblastos/patologia , Fibrose , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/patologia , Substância Branca/patologia
7.
J Neuroinflammation ; 17(1): 143, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366256

RESUMO

BACKGROUND: The inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is involved in immune signaling by bridging the interactions between inflammasome sensors and caspase-1. Strong experimental evidence has shown that ASC-/- mice are protected from disease progression in animal models of multiple sclerosis (MS), suggesting that targeting inflammasome activation via ASC inhibition may be a promising therapeutic strategy in MS. Thus, the goal of our study is to test the efficacy of IC100, a novel humanized antibody targeting ASC, in preventing and/or suppressing disease in the experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS: We employed the EAE model of MS where disease was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Mice were treated with vehicle or increasing doses of IC100 (10, 30, and 45 mg/kg) and clinical disease course was evaluated up to 35 days post EAE induction. Immune cell infiltration into the spinal cord and microglia responses were assessed. RESULTS: We show that IC100 treatment reduced the severity of EAE when compared to vehicle-treated controls. At a dose of 30 mg/kg, IC100 significantly reduced the number of CD4+ and CD8+ T cells and CD11b+MHCII+ activated myeloid cells entering the spinal cord from the periphery, and reduced the number of total and activated microglia. CONCLUSIONS: These data indicate that IC100 suppresses the immune-inflammatory response that drives EAE development and progression, thereby identifying ASC as a promising target for the treatment of MS as well as other neurological diseases with a neuroinflammatory component.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Encefalomielite Autoimune Experimental/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Medula Espinal/imunologia , Medula Espinal/patologia
8.
Brain Behav Immun ; 84: 132-146, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31785393

RESUMO

The pleotropic cytokine tumor necrosis factor (TNF) is involved in the pathophysiology of multiple sclerosis (MS). In various models of MS, including experimental autoimmune encephalomyelitis (EAE), the membrane-bound form of TNF (tmTNF), which signals primarily via TNFR2, mediates protective and reparative effects, whereas the soluble form (solTNF), which signals primarily via TNFR1, promotes pro-inflammatory and detrimental functions. In this study, we investigated the role of TNFR2 expressed in oligodendrocytes in the early phase of EAE pathogenesis. We demonstrated that mice with specific ablation of oligodendroglial TNFR2 displayed early onset and higher peak of motor dysfunction when subjected to EAE, in advance of which accelerated infiltration of immune cells was observed as early as 10 days post EAE induction. The immune cell influx was preceded by microglial activation and increased blood brain barrier permeability. Lack of oligodendroglial TNFR2 accelerated the expression of inflammatory cytokines as well as expression and activation of the inflammasome. Gene expression profiling of oligodendrocytes sorted from the spinal cord 14 days post EAE induction showed robust upregulation of inflammatory genes, some of which were elevated in cells lacking TNFR2 compared to controls. Together, our data demonstrate that oligodendrocytes are directly involved in inflammation and immune modulation in CNS disease and this function is regulated, at least in part, by TNFR2.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Oligodendroglia/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
9.
Acta Neuropathol ; 137(5): 757-783, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30847559

RESUMO

Neuroinflammation is the coordinated response of the central nervous system (CNS) to threats to its integrity posed by a variety of conditions, including autoimmunity, pathogens and trauma. Activated astrocytes, in concert with other cellular elements of the CNS and immune system, are important players in the modulation of the neuroinflammatory response. During neurological disease, they produce and respond to cellular signals that often lead to dichotomous processes, which can promote further damage or contribute to repair. This occurs also in multiple sclerosis (MS), where astrocytes are now recognized as key components of its immunopathology. Evidence supporting this role has emerged not only from studies in MS patients, but also from animal models, among which the experimental autoimmune encephalomyelitis (EAE) model has proved especially instrumental. Based on this premise, the purpose of the present review is to summarize the current knowledge of astrocyte behavior in MS and EAE. Following a brief description of the pathological characteristics of the two diseases and the main functional roles of astrocytes in CNS physiology, we will delve into the specific responses of this cell population, analyzing MS and EAE in parallel. We will define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in. These include: (1) production and response to soluble mediators (e.g., cytokines and chemokines), (2) regulation of oxidative stress, and (3) maintenance of BBB integrity and function. Finally, we will review the state of the art on the available methods to measure astroglial activation in vivo in MS patients, and how this could be exploited to optimize diagnosis, prognosis and treatment decisions. Ultimately, we believe that integrating the knowledge obtained from studies in MS and EAE may help not only better understand the pathophysiology of MS, but also uncover new signals to be targeted for therapeutic intervention.


Assuntos
Astrócitos/fisiologia , Encefalomielite Autoimune Experimental/fisiopatologia , Inflamação/fisiopatologia , Esclerose Múltipla/fisiopatologia , Animais , Humanos
10.
Brain Behav Immun ; 82: 279-297, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505254

RESUMO

BACKGROUND: Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. MATERIALS AND METHODS: To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF-/-) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF-/- mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. RESULTS: TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. CONCLUSION: TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.


Assuntos
Córtex Cerebral/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/deficiência , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Etanercepte/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Via de Sinalização Wnt
11.
J Neurosci ; 37(42): 10185-10199, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28931570

RESUMO

Mitochondrial dysfunction has been implicated in the pathophysiology of neurodegenerative disorders, including multiple sclerosis (MS). To date, the investigation of mitochondrial dysfunction in MS has focused exclusively on neurons, with no studies exploring whether dysregulation of mitochondrial bioenergetics and/or genetics in oligodendrocytes might be associated with the etiopathogenesis of MS and other demyelinating syndromes. To address this question, we established a mouse model where mitochondrial DNA (mtDNA) double-strand breaks (DSBs) were specifically induced in myelinating oligodendrocytes (PLP:mtPstI mice) by expressing a mitochondrial-targeted endonuclease, mtPstI, starting at 3 weeks of age. In both female and male mice, DSBs of oligodendroglial mtDNA caused impairment of locomotor function, chronic demyelination, glial activation, and axonal degeneration, which became more severe with time of induction. In addition, after short transient induction of mtDNA DSBs, PLP:mtPstI mice showed an exacerbated response to experimental autoimmune encephalomyelitis. Together, our data demonstrate that mtDNA damage can cause primary oligodendropathy, which in turn triggers demyelination, proving PLP:mtPstI mice to be a useful tool to study the pathological consequences of mitochondrial dysfunction in oligodendrocytes. In addition, the demyelination and axonal loss displayed by PLP:mtPstI mice recapitulate some of the key features of chronic demyelinating syndromes, including progressive MS forms, which are not accurately reproduced in the models currently available. For this reason, the PLP:mtPstI mouse represents a unique and much needed platform for testing remyelinating therapies.SIGNIFICANCE STATEMENT In this study, we show that oligodendrocyte-specific mitochondrial DNA double-strand breaks in PLP:mtPstI mice cause oligodendrocyte death and demyelination associated with axonal damage and glial activation. Hence, PLP:mtPstI mice represent a unique tool to study the pathological consequences of mitochondrial dysfunction in oligodendrocytes, as well as an ideal platform to test remyelinating and neuroprotective agents.


Assuntos
Axônios/patologia , Quebras de DNA de Cadeia Dupla , DNA Mitocondrial/genética , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Oligodendroglia/patologia , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/genética , Inflamação/patologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia
12.
J Neurosci ; 36(18): 5128-43, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147664

RESUMO

UNLABELLED: Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays. SIGNIFICANCE STATEMENT: Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.


Assuntos
Diferenciação Celular/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Bainha de Mielina , Neuroglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Axônios/patologia , Comportamento Animal , Sobrevivência Celular/genética , Encefalomielite Autoimune Experimental/psicologia , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Knockout , Regeneração Nervosa/genética , Células-Tronco Neurais , Fator de Necrose Tumoral alfa/metabolismo
13.
Ann Vasc Surg ; 39: 293.e7-293.e9, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27908823

RESUMO

The purpose of this report is to describe a minimally invasive alternative endovascular technique for the treatment of chronically occluded stents when it is not possible to cross them endoluminally. A 71-year-old patient with recurrent severe lower limb claudication due to occlusion of a stent placed in the common iliac artery 5 years earlier underwent subintimal recanalization of the stented segment and restenting after failed intraluminal approach. The postoperative computed tomography scan showed that the restented segment was patent with a flattening of the previous stent. Five years postoperatively the patient remains free from symptoms and the recanalized arteries are still patent at ultrasound.


Assuntos
Procedimentos Endovasculares/instrumentação , Artéria Ilíaca , Claudicação Intermitente/terapia , Doença Arterial Periférica/terapia , Stents , Idoso , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares/efeitos adversos , Feminino , Humanos , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/fisiopatologia , Claudicação Intermitente/diagnóstico por imagem , Claudicação Intermitente/etiologia , Claudicação Intermitente/fisiopatologia , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/fisiopatologia , Desenho de Prótese , Recidiva , Retratamento , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular
14.
J Neurochem ; 136 Suppl 1: 63-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26364732

RESUMO

Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.


Assuntos
Axônios/patologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/prevenção & controle , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/métodos , Resultado do Tratamento
16.
Mediators Inflamm ; 2016: 2684098, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070141

RESUMO

Traumatic spinal cord injury (SCI) is followed by an instant increase in expression of the microglial-derived proinflammatory cytokine tumor necrosis factor (TNF) within the lesioned cord. TNF exists both as membrane-anchored TNF (mTNF) and as cleaved soluble TNF (solTNF). We previously demonstrated that epidural administration of a dominant-negative inhibitor of solTNF, XPro1595, to the contused spinal cord resulted in changes in Iba1 protein expression in microglia/macrophages, decreased lesion volume, and improved locomotor function. Here, we extend our studies using mice expressing mTNF, but no solTNF (mTNFΔ/Δ), to study the effect of genetic ablation of solTNF on SCI. We demonstrate that TNF levels were significantly decreased within the lesioned spinal cord 3 days after SCI in mTNFΔ/Δ mice compared to littermates. This decrease did, however, not translate into significant changes in other pro- and anti-inflammatory cytokines (IL-10, IL-1ß, IL-6, IL-5, IL-2, CXCL1, CCL2, or CCL5), despite a tendency towards increased IL-10 and decreased IL-1ß, TNFR1, and TNFR2 levels in mTNFΔ/Δ mice. In addition, microglial and leukocyte infiltration, activation state (Iba1, CD11b, CD11c, CD45, and MHCII), lesion size, and functional outcome after moderate SCI were comparable between genotypes. Collectively, our data demonstrate that genetic ablation of solTNF does not significantly modulate postlesion outcome after SCI.


Assuntos
Traumatismos da Medula Espinal/sangue , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Animais , Membrana Celular/metabolismo , Citocinas/metabolismo , Feminino , Genes Dominantes , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Homozigoto , Inflamação , Macrófagos/citologia , Macrófagos/metabolismo , Aprendizagem em Labirinto , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Resultado do Tratamento
17.
J Immunol ; 190(9): 4525-34, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530149

RESUMO

A mutation in the IL7Rα locus has been identified as a risk factor for multiple sclerosis (MS), a neurodegenerative autoimmune disease characterized by inflammation, demyelination, and axonal damage. IL7Rα has well documented roles in lymphocyte development and homeostasis, but its involvement in disease is largely understudied. In this study, we use the experimental autoimmune encephalomyelitis (EAE) model of MS to show that a less severe form of the disease results when IL7Rα expression is largely restricted to thymic tissue in IL7RTg(IL7R-/-) mice. Compared with wild-type (WT) mice, IL7RTg(IL7R-/-) mice exhibited reduced paralysis and myelin damage that correlated with dampened effector responses, namely decreased TNF production. Furthermore, treatment of diseased WT mice with neutralizing anti-IL7Rα Ab also resulted in significant improvement of EAE. In addition, chimeric mice were generated by bone marrow transplant to limit expression of IL7Rα to cells of either hematopoietic or nonhematopoietic origin. Mice lacking IL7Rα only on hematopoietic cells develop severe EAE, suggesting that IL7Rα expression in the nonhematopoietic compartment contributes to disease. Moreover, novel IL7Rα expression was identified on astrocytes and oligodendrocytes endogenous to the CNS. Chimeric mice that lack IL7Rα only on nonhematopoietic cells also develop severe EAE, which further supports the role of IL7Rα in T cell effector function. Conversely, mice that lack IL7Rα throughout both compartments are dramatically protected from disease. Taken together, these data indicate that multiple cell types use IL7Rα signaling in the development of EAE, and inhibition of this pathway should be considered as a new therapeutic avenue for MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Receptores de Interleucina-7/imunologia , Linfócitos T/imunologia , Animais , Astrócitos/imunologia , Transplante de Medula Óssea/imunologia , Linhagem da Célula , Sistema Nervoso Central/imunologia , Citocinas/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Mutação/imunologia , Bainha de Mielina/imunologia , Oligodendroglia/imunologia , Timo/imunologia , Fator de Necrose Tumoral alfa/imunologia
18.
Infect Immun ; 82(2): 762-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478090

RESUMO

Neonatal animals are generally very susceptible to infection with bacterial pathogens. However, we recently reported that neonatal mice are highly resistant to orogastric infection with Yersinia enterocolitica. Here, we show that proinflammatory responses greatly exceeding those in adults arise very rapidly in the mesenteric lymph nodes (MLN) of neonates. High-level induction of proinflammatory gene expression occurred in the neonatal MLN as early as 18 h postinfection. Marked innate phagocyte recruitment was subsequently detected at 24 h postinfection. Enzyme-linked immunosorbent spot assay (ELISPOT) analyses indicated that enhanced inflammation in neonatal MLN is contributed to, in part, by an increased frequency of proinflammatory cytokine-secreting cells. Moreover, both CD11b(+) and CD11b(-) cell populations appeared to play a role in proinflammatory gene expression. The level of inflammation in neonatal MLN was also dependent on key bacterial components. Y. enterocolitica lacking the virulence plasmid failed to induce innate phagocyte recruitment. In contrast, tumor necrosis factor alpha (TNF-α) protein expression and neutrophil recruitment were strikingly higher in neonatal MLN after infection with a yopP-deficient strain than with wild-type Y. enterocolitica, whereas only modest increases occurred in adults. This hyperinflammatory response was associated with greater colonization of the spleen and higher mortality in neonates, while there was no difference in mortality among adults. This model highlights the dynamic levels of inflammation in the intestinal lymphoid tissues and reveals the protective (wild-type strain) versus harmful (yopP-deficient strain) consequences of inflammation in neonates. Moreover, these results reveal that the neonatal intestinal lymphoid tissues have great potential to rapidly mobilize innate components in response to infection with bacterial enteropathogens.


Assuntos
Linfonodos/imunologia , Linfonodos/microbiologia , Linfadenite Mesentérica/imunologia , Linfadenite Mesentérica/microbiologia , Yersiniose/imunologia , Yersiniose/patologia , Yersinia enterocolitica/imunologia , Animais , Animais Recém-Nascidos , Perfilação da Expressão Gênica , Inflamação , Linfonodos/patologia , Macrófagos/imunologia , Linfadenite Mesentérica/patologia , Camundongos , Baço/microbiologia , Análise de Sobrevida , Yersiniose/microbiologia
19.
Glia ; 62(3): 452-67, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357067

RESUMO

Astrocytes respond to insult with a process of cellular activation known as reactive astrogliosis. One of the key signals regulating this phenomenon is the transcription factor nuclear factor-kappa B (NF-κB), which is responsible for modulating inflammation, cell survival, and cell death. In astrocytes, following trauma or disease, the expression of NF-κB-dependent genes is highly activated. We previously demonstrated that inactivation of astroglial NF-κB in vivo (GFAP-IκBα-dn mice) leads to improved functional outcome in experimental autoimmune encephalomyelitis (EAE), and this is accompanied by reduction of pro-inflammatory gene expression in the CNS. Here we extend our studies to show that recovery from EAE in GFAP-IκBα-dn mice is associated with reduction of peripheral immune cell infiltration into the CNS at the chronic phase of EAE. This is not dependent on a less permeable blood-brain barrier, but rather on a reduced immune cell mobilization from the periphery. Furthermore, once inside the CNS, the ability of T cells to produce pro-inflammatory cytokines is diminished during acute disease. In parallel, we found that the number of total and activated microglial cells is reduced, suggesting that functional improvement in GFAP-IκBα-dn mice is dependent upon reduction of the overall inflammatory response within the CNS sustained by both resident and infiltrating cells. This results in preservation of myelin compaction and enhanced remyelination, as shown by electron microscopy analysis of the spinal cord. Collectively our data indicate that astrocytes are key players in driving CNS inflammation and are directly implicated in the pathophysiology of EAE, since blocking their pro-inflammatory capability results in protection from the disease.


Assuntos
Astrócitos/fisiologia , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Regulação da Expressão Gênica/imunologia , Inflamação/etiologia , Inflamação/patologia , Animais , Astrócitos/ultraestrutura , Sistema Nervoso Central/imunologia , Claudina-5/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas I-kappa B/genética , Imunoglobulina G/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Bainha de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Inibidor de NF-kappaB alfa , Fragmentos de Peptídeos/toxicidade , Medula Espinal , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA