RESUMO
Exercise can cause dangerous fluctuations in blood glucose in people living with type 1 diabetes (T1D). Aerobic exercise, for example, can cause acute hypoglycemia secondary to increased insulin-mediated and noninsulin-mediated glucose utilization. Less is known about how resistance exercise (RE) impacts glucose dynamics. Twenty-five people with T1D underwent three sessions of either moderate or high-intensity RE at three insulin infusion rates during a glucose tracer clamp. We calculated time-varying rates of endogenous glucose production (EGP) and glucose disposal (Rd) across all sessions and used linear regression and extrapolation to estimate insulin- and noninsulin-mediated components of glucose utilization. Blood glucose did not change on average during exercise. The area under the curve (AUC) for EGP increased by 1.04 mM during RE (95% CI: 0.65-1.43, P < 0.001) and decreased proportionally to insulin infusion rate (0.003 mM per percent above basal rate, 95% CI: 0.001-0.006, P = 0.003). The AUC for Rd rose by 1.26 mM during RE (95% CI: 0.41-2.10, P = 0.004) and increased proportionally with insulin infusion rate (0.04 mM per percent above basal rate, CI: 0.03-0.04, P < 0.001). No differences were observed between the moderate and high resistance groups. Noninsulin-mediated glucose utilization rose significantly during exercise before returning to baseline roughly 30-min postexercise. Insulin-mediated glucose utilization remained unchanged during exercise sessions. Circulating catecholamines and lactate rose during exercise despite relatively small changes observed in Rd. Results provide an explanation of why RE may pose a lower overall risk for hypoglycemia.NEW & NOTEWORTHY Aerobic exercise is known to cause decreases in blood glucose secondary to increased glucose utilization in people living with type 1 diabetes (T1D). However, less is known about how resistance-type exercise impacts glucose dynamics. Twenty-five participants with T1D performed in-clinic weight-bearing exercises under a glucose clamp. Mathematical modeling of infused glucose tracer allowed for quantification of the rate of hepatic glucose production as well as rates of insulin-mediated and noninsulin-mediated glucose uptake experienced during resistance exercise.
Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Treinamento Resistido , Humanos , Glucose , Insulina , Glicemia , Exercício Físico , Ácido LácticoRESUMO
Aerobic exercise in type 1 diabetes (T1D) causes rapid increase in glucose utilization due to muscle work during exercise, followed by increased insulin sensitivity after exercise. Better understanding of these changes is necessary for models of exercise in T1D. Twenty-six individuals with T1D underwent three sessions at three insulin rates (100%, 150%, 300% of basal). After 3-h run-in, participants performed 45 min aerobic exercise (moderate or intense). We determined area under the curve for endogenous glucose production (AUCEGP) and rate of glucose disappearance (AUCRd) over 45 min from exercise start. A novel application of linear regression of Rd across the three insulin sessions allowed separation of insulin-mediated from non-insulin-mediated glucose uptake before, during, and after exercise. AUCRd increased 12.45 mmol/L (CI = 10.33-14.58, P < 0.001) and 13.13 mmol/L (CI = 11.01-15.26, P < 0.001) whereas AUCEGP increased 1.66 mmol/L (CI = 1.01-2.31, P < 0.001) and 3.46 mmol/L (CI = 2.81-4.11, P < 0.001) above baseline during moderate and intense exercise, respectively. AUCEGP increased during intense exercise by 2.14 mmol/L (CI = 0.91-3.37, P < 0.001) compared with moderate exercise. There was significant effect of insulin infusion rate on AUCRd equal to 0.06 mmol/L per % above basal rate (CI = 0.05-0.07, P < 0.001). Insulin-mediated glucose uptake rose during exercise and persisted hours afterward, whereas non-insulin-mediated effect was limited to the exercise period. To our knowledge, this method of isolating dynamic insulin- and non-insulin-mediated uptake has not been previously employed during exercise. These results will be useful in informing glucoregulatory models of T1D. The study has been registered at www.clinicaltrials.gov as NCT03090451.NEW & NOTEWORTHY Separating insulin and non-insulin glucose uptake dynamically during exercise in type 1 diabetes has not been done before. We use a multistep process, including a previously described linear regression method, over three insulin infusion sessions, to perform this separation and can graph these components before, during, and after exercise for the first time.
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Exercício Físico/fisiologia , Glucose/farmacocinética , Insulina/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Feminino , Humanos , Hiperinsulinismo/metabolismo , Hipoglicemia/metabolismo , Insulina/administração & dosagem , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Esforço Físico/fisiologia , Adulto JovemRESUMO
The aim of this pilot study was to investigate the effect of exercise on sleep and nocturnal hypoglycaemia in adults with type 1 diabetes (T1D). In a 3-week crossover trial, 10 adults with T1D were randomized to perform aerobic, resistance or no exercise. During each exercise week, participants completed 2 separate 45-minutes exercise sessions at an academic medical center. Participants returned home and wore a continuous glucose monitor and a wrist-based activity monitor to estimate sleep duration. Participants on average lost 70 (±49) minutes of sleep (P = .0015) on nights following aerobic exercise and 27 (±78) minutes (P = .3) following resistance exercise relative to control nights. The odds ratio with confidence intervals of nocturnal hypoglycaemia occurring on nights following aerobic and resistance exercise was 5.4 (1.3, 27.2) and 7.0 (1.7, 37.3), respectively. Aerobic exercise can cause sleep loss in T1D possibly from increased hypoglycaemia.
Assuntos
Diabetes Mellitus Tipo 1/terapia , Dissonias/etiologia , Exercício Físico , Hipoglicemia/etiologia , Treinamento Resistido/efeitos adversos , Corrida , Centros Médicos Acadêmicos , Actigrafia , Adulto , Glicemia/análise , Estudos de Coortes , Terapia Combinada/efeitos adversos , Estudos Cross-Over , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Dissonias/complicações , Humanos , Hipoglicemia/fisiopatologia , Hipoglicemia/prevenção & controle , Sistemas de Infusão de Insulina/efeitos adversos , Monitorização Ambulatorial , Consumo de Oxigênio , Projetos PilotoRESUMO
BACKGROUND: Exercise can rapidly drop glucose in people with type 1 diabetes. Ubiquitous wearable fitness sensors are not integrated into automated insulin delivery (AID) systems. We hypothesised that an AID can automate insulin adjustments using real-time wearable fitness data to reduce hypoglycaemia during exercise and free-living conditions compared with an AID not automating use of fitness data. METHODS: Our study population comprised of individuals (aged 21-50 years) with type 1 diabetes from from the Harold Schnitzer Diabetes Health Center clinic at Oregon Health and Science University, OR, USA, who were enrolled into a 76 h single-centre, two-arm randomised (4-block randomisation), non-blinded crossover study to use (1) an AID that detects exercise, prompts the user, and shuts off insulin during exercise using an exercise-aware adaptive proportional derivative (exAPD) algorithm or (2) an AID that automates insulin adjustments using fitness data in real-time through an exercise-aware model predictive control (exMPC) algorithm. Both algorithms ran on iPancreas comprising commercial glucose sensors, insulin pumps, and smartwatches. Participants executed 1 week run-in on usual therapy followed by exAPD or exMPC for one 12 h primary in-clinic session involving meals, exercise, and activities of daily living, and 2 free-living out-patient days. Primary outcome was time below range (<3·9 mmol/L) during the primary in-clinic session. Secondary outcome measures included mean glucose and time in range (3·9-10 mmol/L). This trial is registered with ClinicalTrials.gov, NCT04771403. FINDINGS: Between April 13, 2021, and Oct 3, 2022, 27 participants (18 females) were enrolled into the study. There was no significant difference between exMPC (n=24) versus exAPD (n=22) in time below range (mean [SD] 1·3% [2·9] vs 2·5% [7·0]) or time in range (63·2% [23·9] vs 59·4% [23·1]) during the primary in-clinic session. In the 2 h period after start of in-clinic exercise, exMPC had significantly lower mean glucose (7·3 [1·6] vs 8·0 [1·7] mmol/L, p=0·023) and comparable time below range (1·4% [4·2] vs 4·9% [14·4]). Across the 76 h study, both algorithms achieved clinical time in range targets (71·2% [16] and 75·5% [11]) and time below range (1·0% [1·2] and 1·3% [2·2]), significantly lower than run-in period (2·4% [2·4], p=0·0004 vs exMPC; p=0·012 vs exAPD). No adverse events occurred. INTERPRETATION: AIDs can integrate exercise data from smartwatches to inform insulin dosing and limit hypoglycaemia while improving glucose outcomes. Future AID systems that integrate exercise metrics from wearable fitness sensors may help people living with type 1 diabetes exercise safely by limiting hypoglycaemia. FUNDING: JDRF Foundation and the Leona M and Harry B Helmsley Charitable Trust, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.
Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Atividades Cotidianas , Inteligência Artificial , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/uso terapêutico , Gastos em Saúde , Hipoglicemiantes/uso terapêutico , Insulina , Estados Unidos , MasculinoRESUMO
We present a robust insulin delivery system that includes automated meal detection and carbohydrate content estimation using machine learning for meal insulin dosing called robust artificial pancreas (RAP). We conducted a randomized, single-center crossover trial to compare postprandial glucose control in the four hours following unannounced meals using a hybrid model predictive control (MPC) algorithm and the RAP system. The RAP system includes a neural network model to automatically detect meals and deliver a recommended meal insulin dose. The meal detection algorithm has a sensitivity of 83.3%, false discovery rate of 16.6%, and mean detection time of 25.9 minutes. While there is no significant difference in incremental area under the curve of glucose, RAP significantly reduces time above range (glucose >180 mg/dL) by 10.8% (P = 0.04) and trends toward increasing time in range (70-180 mg/dL) by 9.1% compared with MPC. Time below range (glucose <70 mg/dL) is not significantly different between RAP and MPC.
RESUMO
Introduction: DailyDose is a decision support system designed to provide real-time dosing advice and weekly insulin dose adjustments for adults living with type 1 diabetes using multiple daily insulin injections. Materials and Methods: Twenty-five adults were enrolled in this single-arm study. All participants used Dexcom G6 for continuous glucose monitoring, InPen for short-acting insulin doses, and Clipsulin to track long-acting insulin doses. Participants used DailyDose on an iPhone for 8 weeks. The primary endpoint was % time in range (TIR) comparing the 2-week baseline to the final 2-week period of DailyDose use. Results: There were no significant differences between TIR or other glycemic metrics between the baseline period compared to final 2-week period of DailyDose use. TIR significantly improved by 6.3% when more than half of recommendations were accepted and followed compared with 50% or fewer recommendations (95% CI 2.5%-10.1%, P = 0.001). Conclusions: Use of DailyDose did not improve glycemic outcomes compared to the baseline period. In a post hoc analysis, accepting and following recommendations from DailyDose was associated with improved TIR. Clinical Trial Registration Number: NCT04428645.
Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Adulto , Humanos , Insulina/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Automonitorização da Glicemia , Glicemia , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas/análiseRESUMO
Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca(2+)-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg(2+) homeostasis, diseases caused by abnormal magnesium absorption, and in Ca(2+)-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn(2+) homeostasis and in Zn(2+)-mediated neuronal injury. Using a combination of fluorescent Zn(2+) imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn(2+)-induced injury of cultured mouse cortical neurons. The Zn(2+)-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd(3+) or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn(2+)-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn(2+) accumulation and Zn(2+)-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn(2+)-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn(2+) toxicity plays an important role.
Assuntos
Neurônios/efeitos dos fármacos , Neurotoxinas/metabolismo , Canais de Cátion TRPM/metabolismo , Zinco/toxicidade , Animais , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Glucose/metabolismo , Homeostase , Humanos , Magnésio/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPM/genética , Zinco/metabolismoRESUMO
Acid-sensing ion channels (ASICs) are voltage-independent Na(+) channels activated by extracellular protons. ASIC1a is expressed in neurons in mammalian brain and is implicated in long term potentiation of synaptic transmission that contributes to learning and memory. In ischemic brain injury, however, activation of this Ca(2+)-permeable channel plays a critical role in acidosis-mediated, glutamate-independent, Ca(2+) toxicity. We report here the identification of insulin as a regulator of ASIC1a surface expression. In modeled ischemia using Chinese hamster ovary cells, serum depletion caused a significant increase in ASIC1a surface expression that resulted in the potentiation of ASIC1a activity. Among the components of serum, insulin was identified as the key factor that maintains a low level of ASIC1a on the plasma membrane. Neurons subjected to insulin depletion increased surface expression of ASIC1a with resultant potentiation of ASIC1a currents. Intracellularly, ASIC1a is predominantly localized to the endoplasmic reticulum in Chinese hamster ovary cells, and this intracellular localization is also observed in neurons. Under conditions of serum or insulin depletion, the intracellular ASIC1a is translocated to the cell surface, increasing the surface expression level. These results reveal an important trafficking mechanism of ASIC1a that is relevant to both the normal physiology and the pathological activity of this channel.
Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Isquemia Encefálica/genética , Células CHO , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Membrana Celular/genética , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Insulina/metabolismo , Memória , Camundongos , Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Ratos , Canais de Sódio/genética , Transmissão Sináptica/genéticaRESUMO
Automated insulin delivery systems for people with type 1 diabetes rely on an accurate subcutaneous glucose sensor and an infusion cannula that delivers insulin in response to measured glucose. Integrating the sensor with the infusion cannula would provide substantial benefit by reducing the number of devices inserted into subcutaneous tissue. We describe the sensor chemistry and a calibration algorithm to minimize impact of insulin delivery artifacts in a new glucose sensing cannula. Seven people with type 1 diabetes undergoing automated insulin delivery used two sensing cannulae whereby one delivered a rapidly-acting insulin analog and the other delivered a control phosphate buffered saline (PBS) solution with no insulin. While there was a small artifact in both conditions that increased for larger volumes, there was no difference between the artifacts in the sensing cannula delivering insulin compared with the sensing cannula delivering PBS as determined by integrating the area-under-the-curve of the sensor values following delivery of larger amounts of fluid (P = 0.7). The time for the sensor to recover from the artifact was found to be longer for larger fluid amounts compared with smaller fluid amounts (10.3 ± 8.5 min vs. 41.2 ± 78.3 s, P < 0.05). Using a smart-sampling Kalman filtering smoothing algorithm improved sensor accuracy. When using an all-point calibration on all sensors, the smart-sampling Kalman filter reduced the mean absolute relative difference from 10.9% to 9.5% and resulted in 96.7% of the data points falling within the A and B regions of the Clarke error grid. Despite a small artifact, which is likely due to dilution by fluid delivery, it is possible to continuously measure glucose in a cannula that simultaneously delivers insulin.
Assuntos
Técnicas Biossensoriais , Diabetes Mellitus Tipo 1 , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose , Humanos , Hipoglicemiantes , Insulina , Sistemas de Infusão de Insulina , OxirreduçãoRESUMO
The accuracy of continuous glucose monitoring (CGM) sensors may be significantly impacted by exercise. We evaluated the impact of three different types of exercise on the accuracy of the Dexcom G6 sensor. Twenty-four adults with type 1 diabetes on multiple daily injections wore a G6 sensor. Participants were randomized to aerobic, resistance, or high intensity interval training (HIIT) exercise. Each participant completed two in-clinic 30-min exercise sessions. The sensors were applied on average 5.3 days prior to the in-clinic visits (range 0.6-9.9). Capillary blood glucose (CBG) measurements with a Contour Next meter were performed before and after exercise as well as every 10 min during exercise. No CGM calibrations were performed. The median absolute relative difference (MARD) and median relative difference (MRD) of the CGM as compared with the reference CBG did not differ significantly from the start of exercise to the end exercise across all exercise types (ranges for aerobic MARD: 8.9 to 13.9% and MRD: -6.4 to 0.5%, resistance MARD: 7.7 to 14.5% and MRD: -8.3 to -2.9%, HIIT MARD: 12.1 to 16.8% and MRD: -14.3 to -9.1%). The accuracy of the no-calibration Dexcom G6 CGM was not significantly impacted by aerobic, resistance, or HIIT exercise.
Assuntos
Automonitorização da Glicemia , Glicemia , Diabetes Mellitus Tipo 1 , Calibragem , Exercício Físico , HumanosRESUMO
Type 1 diabetes (T1D) is characterized by pancreatic beta cell dysfunction and insulin depletion. Over 40% of people with T1D manage their glucose through multiple injections of long-acting basal and short-acting bolus insulin, so-called multiple daily injections (MDI)1,2. Errors in dosing can lead to life-threatening hypoglycaemia events (<70 mg dl-1) and hyperglycaemia (>180 mg dl-1), increasing the risk of retinopathy, neuropathy, and nephropathy. Machine learning (artificial intelligence) approaches are being harnessed to incorporate decision support into many medical specialties. Here, we report an algorithm that provides weekly insulin dosage recommendations to adults with T1D using MDI therapy. We employ a unique virtual platform3 to generate over 50,000 glucose observations to train a k-nearest neighbours4 decision support system (KNN-DSS) to identify causes of hyperglycaemia or hypoglycaemia and determine necessary insulin adjustments from a set of 12 potential recommendations. The KNN-DSS algorithm achieves an overall agreement with board-certified endocrinologists of 67.9% when validated on real-world human data, and delivers safe recommendations, per endocrinologist review. A comparison of inter-physician-recommended adjustments to insulin pump therapy indicates full agreement of 41.2% among endocrinologists, which is consistent with previous measures of inter-physician agreement (41-45%)5. In silico3,6 benchmarking using a platform accepted by the United States Food and Drug Administration for evaluation of artificial pancreas technologies indicates substantial improvement in glycaemic outcomes after 12 weeks of KNN-DSS use. Our data indicate that the KNN-DSS allows for early identification of dangerous insulin regimens and may be used to improve glycaemic outcomes and prevent life-threatening complications in people with T1D.
Assuntos
Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Adulto , Algoritmos , Glicemia/análise , Simulação por Computador , Gerenciamento Clínico , Controle Glicêmico , Humanos , Hiperglicemia/sangue , Hipoglicemia/sangue , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/sangue , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/sangue , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: To assess the efficacy and feasibility of a dual-hormone (DH) closed-loop system with insulin and a novel liquid stable glucagon formulation compared with an insulin-only closed-loop system and a predictive low glucose suspend (PLGS) system. RESEARCH DESIGN AND METHODS: In a 76-h, randomized, crossover, outpatient study, 23 participants with type 1 diabetes used three modes of the Oregon Artificial Pancreas system: 1) dual-hormone (DH) closed-loop control, 2) insulin-only single-hormone (SH) closed-loop control, and 3) PLGS system. The primary end point was percentage time in hypoglycemia (<70 mg/dL) from the start of in-clinic aerobic exercise (45 min at 60% VO2max) to 4 h after. RESULTS: DH reduced hypoglycemia compared with SH during and after exercise (DH 0.0% [interquartile range 0.0-4.2], SH 8.3% [0.0-12.5], P = 0.025). There was an increased time in hyperglycemia (>180 mg/dL) during and after exercise for DH versus SH (20.8% DH vs. 6.3% SH, P = 0.038). Mean glucose during the entire study duration was DH, 159.2; SH, 151.6; and PLGS, 163.6 mg/dL. Across the entire study duration, DH resulted in 7.5% more time in target range (70-180 mg/dL) compared with the PLGS system (71.0% vs. 63.4%, P = 0.044). For the entire study duration, DH had 28.2% time in hyperglycemia vs. 25.1% for SH (P = 0.044) and 34.7% for PLGS (P = 0.140). Four participants experienced nausea related to glucagon, leading three to withdraw from the study. CONCLUSIONS: The glucagon formulation demonstrated feasibility in a closed-loop system. The DH system reduced hypoglycemia during and after exercise, with some increase in hyperglycemia.
Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucagon/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Adulto , Glicemia/análise , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Exercício Físico/fisiologia , Estudos de Viabilidade , Feminino , Glucagon/efeitos adversos , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Oregon , Pacientes Ambulatoriais , Adulto JovemRESUMO
OBJECTIVE: Automated insulin delivery is the new standard for type 1 diabetes, but exercise-related hypoglycemia remains a challenge. Our aim was to determine whether a dual-hormone closed-loop system using wearable sensors to detect exercise and adjust dosing to reduce exercise-related hypoglycemia would outperform other forms of closed-loop and open-loop therapy. RESEARCH DESIGN AND METHODS: Participants underwent four arms in randomized order: dual-hormone, single-hormone, predictive low glucose suspend, and continuation of current care over 4 outpatient days. Each arm included three moderate-intensity aerobic exercise sessions. The two primary outcomes were percentage of time in hypoglycemia (<70 mg/dL) and in a target range (70-180 mg/dL) assessed across the entire study and from the start of the in-clinic exercise until the next meal. RESULTS: The analysis included 20 adults with type 1 diabetes who completed all arms. The mean time (SD) in hypoglycemia was the lowest with dual-hormone during the exercise period: 3.4% (4.5) vs. 8.3% (12.6) single-hormone (P = 0.009) vs. 7.6% (8.0) predictive low glucose suspend (P < 0.001) vs. 4.3% (6.8) current care where pre-exercise insulin adjustments were allowed (P = 0.49). Time in hypoglycemia was also the lowest with dual-hormone during the entire 4-day study: 1.3% (1.0) vs. 2.8% (1.7) single-hormone (P < 0.001) vs. 2.0% (1.5) predictive low glucose suspend (P = 0.04) vs. 3.1% (3.2) current care (P = 0.007). Time in range during the entire study was the highest with single-hormone: 74.3% (8.0) vs. 72.0% (10.8) dual-hormone (P = 0.44). CONCLUSIONS: The addition of glucagon delivery to a closed-loop system with automated exercise detection reduces hypoglycemia in physically active adults with type 1 diabetes.
Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Exercício Físico/fisiologia , Glucagon/administração & dosagem , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Dispositivos Eletrônicos Vestíveis , Adulto , Glicemia/análise , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Sistemas de Infusão de Insulina/normas , Masculino , Refeições , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Pâncreas Artificial , Adulto JovemRESUMO
BACKGROUND: There is currently no stable liquid form of glucagon commercially available. The aim of this study is to assess the speed of absorption and onset of action of G-Pump™ glucagon at 3 doses as compared to GlucaGen®, all delivered subcutaneously via an OmniPod®. METHODS: Nineteen adult subjects with type 1 diabetes participated in this Phase 2, randomized, double-blind, cross-over, pharmacokinetic/pharmacodynamic study. Subjects were given 0.3, 1.2, and 2.0 µg/kg each of G-Pump glucagon and GlucaGen via an OmniPod. RESULTS: G-Pump glucagon effectively increased blood glucose levels in a dose-dependent fashion with a glucose Cmax of 183, 200, and 210 mg/dL at doses of 0.3, 1.2, and 2.0 µg/kg, respectively (P = ns vs GlucaGen). Mean increases in blood glucose from baseline were 29.2, 52.9, and 77.7 mg/dL for G-Pump doses of 0.3, 1.2, and 2.0 µg/kg, respectively. There were no statistically significant differences between treatments in the glucose T50%-early or glucagon T50%-early with one exception. The glucagon T50%-early was greater following G-Pump treatment at the 2.0 µg/kg dose (13.9 ± 4.7 min) compared with GlucaGen treatment at the 2.0 µg/kg dose (11.0 ± 3.1 min, P = .018). There was more pain and erythema at the infusion site with G-Pump as compared to GlucaGen. No serious adverse events were reported, and no unexpected safety issues were observed. CONCLUSIONS: G-Pump glucagon is a novel, stable glucagon formulation with similar PK/PD properties as GlucaGen, but was associated with more pain and infusion site reactions as the dose increased, as compared to GlucaGen.
Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fármacos Gastrointestinais/farmacocinética , Glucagon/farmacocinética , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Glucagon/administração & dosagem , Glucagon/efeitos adversos , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Sistemas de Infusão de Insulina , Masculino , Pessoa de Meia-Idade , Adesivo Transdérmico , Adulto JovemRESUMO
In this article, we present several important contributions necessary for enabling an artificial endocrine pancreas (AP) system to better respond to exercise events. First, we show how exercise can be automatically detected using body-worn accelerometer and heart rate sensors. During a 22 hour overnight inpatient study, 13 subjects with type 1 diabetes wearing a Zephyr accelerometer and heart rate monitor underwent 45 minutes of mild aerobic treadmill exercise while controlling their glucose levels using sensor-augmented pump therapy. We used the accelerometer and heart rate as inputs into a validated regression model. Using this model, we were able to detect the exercise event with a sensitivity of 97.2% and a specificity of 99.5%. Second, from this same study, we show how patients' glucose declined during the exercise event and we present results from in silico modeling that demonstrate how including an exercise model in the glucoregulatory model improves the estimation of the drop in glucose during exercise. Last, we present an exercise dosing adjustment algorithm and describe parameter tuning and performance using an in silico glucoregulatory model during an exercise event.
Assuntos
Actigrafia/instrumentação , Algoritmos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cálculos da Dosagem de Medicamento , Teste de Esforço , Exercício Físico , Glucagon/administração & dosagem , Frequência Cardíaca , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Pâncreas Artificial , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/fisiopatologia , Metabolismo Energético , Desenho de Equipamento , Glucagon/farmacocinética , Humanos , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Modelos Lineares , Modelos Biológicos , Valor Preditivo dos Testes , Fatores de TempoRESUMO
OBJECTIVE: To evaluate subjects with type 1 diabetes for hepatic glycogen depletion after repeated doses of glucagon, simulating delivery in a bihormonal closed-loop system. RESEARCH DESIGN AND METHODS: Eleven adult subjects with type 1 diabetes participated. Subjects underwent estimation of hepatic glycogen using (13)C MRS. MRS was performed at the following four time points: fasting and after a meal at baseline, and fasting and after a meal after eight doses of subcutaneously administered glucagon at a dose of 2 µg/kg, for a total mean dose of 1,126 µg over 16 h. The primary and secondary end points were, respectively, estimated hepatic glycogen by MRS and incremental area under the glucose curve for a 90-min interval after glucagon administration. RESULTS: In the eight subjects with complete data sets, estimated glycogen stores were similar at baseline and after repeated glucagon doses. In the fasting state, glycogen averaged 21 ± 3 g/L before glucagon administration and 25 ± 4 g/L after glucagon administration (mean ± SEM) (P = NS). In the fed state, glycogen averaged 40 ± 2 g/L before glucagon administration and 34 ± 4 g/L after glucagon administration (P = NS). With the use of an insulin action model, the rise in glucose after the last dose of glucagon was comparable to the rise after the first dose, as measured by the 90-min incremental area under the glucose curve. CONCLUSIONS: In adult subjects with well-controlled type 1 diabetes (mean A1C 7.2%), glycogen stores and the hyperglycemic response to glucagon administration are maintained even after receiving multiple doses of glucagon. This finding supports the safety of repeated glucagon delivery in the setting of a bihormonal closed-loop system.
Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucagon/uso terapêutico , Hormônios/uso terapêutico , Hipoglicemia/terapia , Glicogênio Hepático/metabolismo , Adulto , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Retroalimentação Fisiológica , Feminino , Glucagon/administração & dosagem , Hormônios/administração & dosagem , Humanos , Hipoglicemia/prevenção & controle , Insulina/administração & dosagem , Insulina/uso terapêutico , Glicogênio Hepático/deficiência , MasculinoRESUMO
OBJECTIVE: Glucagon delivery in closed-loop control of type 1 diabetes is effective in minimizing hypoglycemia. However, high insulin concentration lowers the hyperglycemic effect of glucagon, and small doses of glucagon in this setting are ineffective. There are no studies clearly defining the relationship between insulin levels, subcutaneous glucagon, and blood glucose. RESEARCH DESIGN AND METHODS: Using a euglycemic clamp technique in 11 subjects with type 1 diabetes, we examined endogenous glucose production (EGP) of glucagon (25, 75, 125, and 175 µg) at three insulin infusion rates (0.016, 0.032, and 0.05 units/kg/h) in a randomized, crossover study. Infused 6,6-dideuterated glucose was measured every 10 min, and EGP was determined using a validated glucoregulatory model. Area under the curve (AUC) for glucose production was the primary outcome, estimated over 60 min. RESULTS: At low insulin levels, EGP rose proportionately with glucagon dose, from 5 ± 68 to 112 ± 152 mg/kg (P = 0.038 linear trend), whereas at high levels, there was no increase in glucose output (19 ± 53 to 26 ± 38 mg/kg, P = NS). Peak glucagon serum levels and AUC correlated well with dose (r2 = 0.63, P < 0.001), as did insulin levels with insulin infusion rates (r2 = 0.59, P < 0.001). CONCLUSIONS: EGP increases steeply with glucagon doses between 25 and 175 µg at lower insulin infusion rates. However, high insulin infusion rates prevent these doses of glucagon from significantly increasing glucose output and may reduce glucagon effectiveness in preventing hypoglycemia when used in the artificial pancreas.
Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucagon/administração & dosagem , Insulina/uso terapêutico , Adulto , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Feminino , Glucagon/farmacologia , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Hipoglicemia/prevenção & controle , Insulina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Pâncreas ArtificialRESUMO
Automated control of blood glucose in patients with type-1 diabetes has not yet been fully implemented. The aim of this study was to design and clinically evaluate a system that integrates a control algorithm with off-the-shelf subcutaneous sensors and pumps to automate the delivery of the hormones glucagon and insulin in response to continuous glucose sensor measurements. The automated component of the system runs an adaptive proportional derivative control algorithm which determines hormone delivery rates based on the sensed glucose measurements and the meal announcements by the patient. We provide details about the system design and the control algorithm, which incorporates both a fading memory proportional derivative controller (FMPD) and an adaptive system for estimating changing sensitivity to insulin based on a glucoregulatory model of insulin action. For an inpatient study carried out in eight subjects using Dexcom SEVEN PLUS sensors, prestudy HbA1c averaged 7.6, which translates to an estimated average glucose of 171 mg/dL. In contrast, during use of the automated system, after initial stabilization, glucose averaged 145 mg/dL and subjects were kept within the euglycemic range (between 70 and 180 mg/dL) for 73.1% of the time, indicating improved glycemic control. A further study on five additional subjects in which we used a newer and more reliable glucose sensor (Dexcom G4 PLATINUM) and made improvements to the insulin and glucagon pump communication system resulted in elimination of hypoglycemic events. For this G4 study, the system was able to maintain subjects' glucose levels within the near-euglycemic range for 71.6% of the study duration and the mean venous glucose level was 151 mg/dL.
Assuntos
Glucagon/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Adulto , Algoritmos , Glicemia/análise , Automonitorização da Glicemia , Glucagon/uso terapêutico , Hormônios/administração & dosagem , Hormônios/uso terapêutico , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Pacientes Internados , Insulina/uso terapêutico , Pessoa de Meia-Idade , Modelos BiológicosRESUMO
BACKGROUND AND OBJECTIVE: There is a paucity of data regarding tolerability of alkaline drugs administered subcutaneously. The aim of this study was to assess the tolerability of alkaline preparations of human albumin delivered subcutaneously to healthy humans. METHODS: We compared the tolerability of neutral versus alkaline (pH 10) formulations of human albumin in ten volunteers. With an intent to minimize the time required to reach physiological pH after injection, the alkaline formulation was buffered with a low concentration of glycine (20 mmol/L). Each formulation was given at two rates: over 5 seconds and over 60 seconds. A six-point scale was used to assess discomfort. RESULTS: For slow injections, there was a significant difference between pH 7.4 and pH 10 injections (0.4 ± 0.2 vs 1.1 ± 0.2, mean ± SEM; p = 0.025), though the degree of discomfort at pH 10 injections was only 'mild or slight'. For fast injections, the difference between neutral and alkaline formulations was of borderline significance. Inflammation and oedema, as judged by a physician, were very minimal for all injections, irrespective of pH. CONCLUSION: For subcutaneous drug administration (especially when delivered slowly), there was more discomfort associated with alkaline versus neutral formulations of albumin, though the discomfort was mild. This study suggests that there is little discomfort and inflammation resulting from subcutaneous administration of protein drugs formulated with weak buffers at alkaline pH.
Assuntos
Albuminas/administração & dosagem , Adulto , Albuminas/efeitos adversos , Albuminas/química , Soluções Tampão , Química Farmacêutica , Método Duplo-Cego , Edema/etiologia , Eritema/etiologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Inflamação/etiologia , Injeções Subcutâneas/efeitos adversos , Masculino , Oregon , Dor/diagnóstico , Dor/etiologia , Medição da Dor , Fatores de TempoRESUMO
Stroke/brain ischemia is a leading cause of death and long-term disabilities. Increased oxidative stress plays an important role in the pathology of brain ischemia. Hydrogen peroxide (H(2)O(2)) is a major oxidant known to cause neuronal injury; however, the detailed mechanism remains unclear. Previous studies have suggested that H(2)O(2)-induced injury is associated with increased intracellular Ca(2+), mediated by glutamate receptors or voltage-gated Ca(2+) channels. Here, we demonstrate that, at concentrations relevant to stroke, H(2)O(2) induces a Ca(2+)-dependent injury of mouse cortical neurons in the absence of activation of these receptors/channels. With the culture medium containing blockers of glutamate receptors and voltage-gated Ca(2+) channels, brief exposure of neurons to H(2)O(2) induced a dose-dependent injury. Reducing [Ca(2+)](e) inhibited whereas increasing [Ca(2+)](e) potentiated the H(2)O(2) injury. Fluorescent Ca(2+) imaging confirmed the increase of [Ca(2+)](i) by H(2)O(2) in the presence of the blockers of glutamate receptors and voltage-gated Ca(2+) channels. Addition of 2-aminoethoxydiphenyl borate, an inhibitor of transient receptor potential melastatin 7 (TRPM7) channels, or the use of TRPM7-small interference RNA, protected the neurons from H(2)O(2) injury. In contrast, overexpressing TRPM7 channels in human embryonic kidney 293 cells increased H(2)O(2) injury. Our findings indicate that H(2)O(2) can induce Ca(2+) toxicity independent of glutamate receptors and voltage-gated Ca(2+) channels. Activation of TRPM7 channels is involved in such toxicity.