Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 27(1): 201-213, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35006347

RESUMO

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M-1) than Ag-phendione (Kapp = 2.79 × 105 M-1) and phendione (Kapp = 1.33 × 105 M-1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.


Assuntos
Complexos de Coordenação , Pseudomonas aeruginosa , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , DNA/química , Simulação de Acoplamento Molecular , Fenantrolinas/química , Fenantrolinas/farmacologia , Prata/farmacologia
2.
Mem Inst Oswaldo Cruz ; 117: e210386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293428

RESUMO

Chagas disease (CD) is an old neglected problem that affects more than 6 million people through 21 endemic countries in Latin America. Despite being responsible for more than 12 thousand deaths per year, the disease disposes basically of two drugs for its treatment, the nitroimidazole benznidazole and the nitrofuran nifurtimox. However, these drugs have innumerous limitations that greatly reduce the chances of cure. In Brazil, for example, only benznidazole is available to treat CD patients. Therefore, some proof-of-concept phase II clinical trials focused on improving the current treatment with benznidazole, also comparing it with repositioned drugs or combining them. Indeed, repositioning already marketed drugs in view of combating neglected tropical diseases is a very interesting approach in the context of decreased time for approval, better treatment options and low cost for development and implementation. After the introduction of human immunodeficiency virus aspartyl peptidase inhibitors (HIV-PIs) in the treatment of acquired immune deficiency syndrome (AIDS), the prevalence and incidence of parasitic, fungal and bacterial co-infections suffered a marked reduction, making these HIV-PIs attractive for drug repositioning. In this line, the present perspective presents the promising and beneficial data concerning the effects of HIV-PIs on the clinically relevant forms of Trypanosoma cruzi (i.e., trypomastigotes and amastigotes) and also highlights the ultrastructural and physiological targets for the HIV-PIs on this parasite. Therefore, we raise the possibility that HIV-PIs could be considered as alternative treatment options in the struggle against CD.


Assuntos
Doença de Chagas , Infecções por HIV , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Reposicionamento de Medicamentos , Humanos , Inibidores de Proteases
3.
Mem Inst Oswaldo Cruz ; 117: e220017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35352772

RESUMO

The treatment for tropical neglected diseases, such as Chagas disease (CD) and leishmaniasis, is extremely limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures due to the parasite resistance. Consequently, there is urgency for the development of new therapeutic options to treat such diseases. Since peptidases from these parasites are responsible for crucial functions in their biology, these molecules have been explored as alternative targets. In this context, a myriad of proteolytic inhibitors has been developed against calcium-dependent cysteine-type peptidases, collectively called calpains, which are implicated in several human pathophysiological diseases. These molecules are highly expanded in the genome of trypanosomatids and they have been reported participating in several parasite biological processes. In the present perspective, we discuss our almost two decades of experience employing the calpain inhibitors as an interesting shortcut to a possible repurpose strategy to treat CD and leishmaniasis.


Assuntos
Doença de Chagas , Leishmaniose , Doença de Chagas/tratamento farmacológico , Glicoproteínas/uso terapêutico , Humanos , Leishmaniose/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
4.
Mem Inst Oswaldo Cruz ; 115: e200504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578684

RESUMO

BACKGROUND: Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS: We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE: The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS: A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS: This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Trypanosomatina/classificação , Trypanosomatina/genética , Filogenia
5.
Mem Inst Oswaldo Cruz ; 115: e200142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33053076

RESUMO

BACKGROUND: Calpains are present in almost all organisms and comprise a family of calcium-dependent cysteine peptidases implicated in crucial cellular functions. Trypanosoma cruzi, the causative agent of Chagas disease, presents an expansion on this gene family with unexplored biological properties. OBJECTIVES: Here, we searched for calpains in the T. cruzi genome, evaluated the mRNA levels, calpain activity and the protein expression and determined the cellular localisation in all three parasite life cycle forms. METHODS/FINDINGS: Sixty-three calpain sequences were identified in T. cruzi CL Brener genome, with fourteen domain arrangements. The comparison of calpain mRNA abundance by quantitative polymerase chain reaction (qPCR) revealed seven up-regulated sequences in amastigotes and/or bloodstream trypomastigotes and five in epimastigotes. Western Blotting analysis revealed seven different molecules in the three parasite forms, and one amastigote-specific, while no proteolytic activity could be detected. Flow cytometry assays revealed a higher amount of intracellular calpains in amastigotes and/or trypomastigotes in comparison to epimastigotes. Finally, ultrastructural analysis revealed the presence of calpains in the cytoplasm, vesicular and plasma membranes of the three parasite forms, and in the paraflagellar rod in trypomastigotes. CONCLUSION: Calpains are differentially expressed and localised in the T. cruzi life cycle forms. This study adds data on the calpain occurrence and expression pattern in T. cruzi.


Assuntos
Calpaína/genética , Trypanosoma cruzi/genética , Animais , Western Blotting , Calpaína/metabolismo , Doença de Chagas , Estágios do Ciclo de Vida , RNA Mensageiro/genética
6.
Mem Inst Oswaldo Cruz ; 114: e190147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553371

RESUMO

BACKGROUND: Calpains are proteins belonging to the multi-gene family of calcium-dependent cysteine peptidases that undergo tight on/off regulation, and uncontrolled proteolysis of calpains is associated with severe human pathologies. Calpain orthologues are expanded and diversified in the trypanosomatids genome. OBJECTIVES: Here, we characterised calpains in Leishmania braziliensis, the main causative agent of cutaneous leishmaniasis in Brazil. METHODS/FINDINGS: In total, 34 predicted calpain-like genes were identified. After domain structure evaluation, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) during in vitro metacyclogenesis revealed (i) five genes with enhanced expression in the procyclic stage, (ii) one augmented gene in the metacyclic stage, and (iii) one procyclic-exclusive transcript. Western blot analysis revealed that an antibody against a consensus-conserved peptide reacted with multiple calpain-like proteins, which is consistent with the multi-gene family characteristic. Flow cytometry and immunocytochemistry analyses revealed the presence of calpain-like molecules mainly in the cytoplasm, to a lesser extent in the plasma membrane, and negligible levels in the nucleus, which are all consistent with calpain localisation. Eventually, the calpain inhibitor MDL28170 was used for functional studies revealing (i) a leishmaniostatic effect, (ii) a reduction in the association index in mouse macrophages, (iii) ultra-structural alterations conceivable with autophagy, and (iv) an enhanced expression of the virulence factor GP63. CONCLUSION: This report adds novel insights into the domain structure, expression, and localisation of L. braziliensis calpain-like molecules.


Assuntos
Calpaína/genética , Genoma de Protozoário/genética , Leishmania braziliensis/química , Macrófagos Peritoneais/metabolismo , Animais , Western Blotting , Calpaína/efeitos dos fármacos , Calpaína/metabolismo , Calpaína/ultraestrutura , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Citometria de Fluxo , Regulação da Expressão Gênica , Imuno-Histoquímica , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmania braziliensis/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Virulência
7.
Mem Inst Oswaldo Cruz ; 113(6): e180102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924142

RESUMO

BACKGROUND Scedosporium/Lomentospora species are opportunistic mould pathogens, presenting notable antifungal resistance. OBJECTIVES/METHODS We analysed the conidia and germinated conidia of S. apiospermum (Sap), S. aurantiacum (Sau), S. minutisporum (Smi) and L. prolificans (Lpr) by scanning electron microscopy and exposition of surface molecules by fluorescence microscopy. FINDINGS Conidia of Sap, Smi and Sau had oval, ellipsoidal and cylindrical shape, respectively, with several irregularities surrounding all surface areas, whereas Lpr conidia were rounded with a smooth surface. The germination of Sap occurred at the conidial bottom, while Smi and Sau germination primarily occurred at the centre of the conidial cell, and Lpr germination initiated at any part of the conidial surface. The staining of N-acetylglucosamine-containing molecules by fluorescein-labelled WGA primarily occurred during the germination of all studied fungi and in the conidial scars, which is the primary location of germination. Calcofluor white, which recognises the polysaccharide chitin, strongly stained the conidial cells and, to a lesser extent, the germination. Both mannose-rich glycoconjugates (evidenced by fluoresceinated-ConA) and cell wall externally located polypeptides presented distinct surface locations and expression according to both morphotypes and fungal species. In contrast, sialic acid and galactose-containing structures were not detected at fungal surfaces. MAIN CONCLUSIONS The present study demonstrated the differential production/exposition of surface molecules on distinct morphotypes of Scedosporium/Lomentospora species.


Assuntos
Membrana Celular/ultraestrutura , Scedosporium/ultraestrutura , Esporos Fúngicos/ultraestrutura , Diferenciação Celular , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Scedosporium/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
8.
Mem Inst Oswaldo Cruz ; 113(9): e180212, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30066753

RESUMO

Biofilm formation is the preferred mode of growth lifestyle for many microorganisms, including bacterial and fungal human pathogens. Biofilm is a strong and dynamic structure that confers a broad range of advantages to its members, such as adhesion/cohesion capabilities, mechanical properties, nutritional sources, metabolite exchange platform, cellular communication, protection and resistance to drugs (e.g., antimicrobials, antiseptics, and disinfectants), environmental stresses (e.g., dehydration and ultraviolet light), host immune attacks (e.g., antibodies, complement system, antimicrobial peptides, and phagocytes), and shear forces. Microbial biofilms cause problems in the hospital environment, generating high healthcare costs and prolonged patient stay, which can result in further secondary microbial infections and various health complications. Consequently, both public and private investments must be made to ensure better patient management, as well as to find novel therapeutic strategies to circumvent the resistance and resilience profiles arising from biofilm-associated microbial infections. In this work, we present a general overview of microbial biofilm formation and its relevance within the biomedical context.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Fungos/fisiologia , Microbiologia Ambiental , Humanos
9.
Parasitol Res ; 117(7): 2085-2094, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728827

RESUMO

Despite the available drug options, leishmaniasis treatment remains unsatisfactory. The repurposing of calpain inhibitors originally developed for human diseases became an interesting alternative, since Leishmania cells express calpain-related proteins. The susceptibility of six Leishmania species (L. amazonensis, L. braziliensis, L. major, L. mexicana, L. chagasi, and L. donovani) to the calpain inhibitor MDL28170 was determined. Promastigote and intracellular amastigote viability in the presence of MDL28170 was evaluated. MDL28170 was able to reduce promastigote proliferation in a dose-dependent manner for all the parasites. A significant reduction on the general parasite metabolism was detected, as judged by resazurin assay, as well as induced important morphological alterations, including rounding promastigotes and loss of the flagellum. MDL28170 was also able to reduce the number of intracellular amastigotes in RAW macrophages. The susceptibility of both parasite stages (promastigotes and amastigotes) to MDL28170 was similar for all Leishmania species tested. MDL28170 showed a much higher toxicity to Leishmania amastigotes when compared with mammalian macrophages, displaying selectivity index values varying from 13.1 to 39.8. These results suggest that the development of calpain inhibitors may represent an interesting alternative in the treatment of leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Glicoproteínas/farmacologia , Leishmania/crescimento & desenvolvimento , Leishmania/metabolismo , Animais , Linhagem Celular , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Células RAW 264.7
10.
Parasitology ; 144(2): 117-123, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27869056

RESUMO

Leishmaniasis is a neglected disease, which needs improvements in drug development, mainly due to the toxicity, parasite resistance and low compliance of patients to treatment. Therefore, the development of new chemotherapeutic compounds is an urgent need. This opinion article will briefly highlight the feasible use of calpain inhibitors as leading compounds to search for new therapeutic options to treat leishmaniasis. The milestone of this approach is to take advantage on the myriad of inhibitors developed against calpains, some of which are in advanced clinical trials. The deregulated activity of these enzymes is associated with several pathologies, such as strokes, diabetes and Parkinson's disease, to name a few. In Leishmania, calpain upregulation has been associated to drug resistance and virulence. Whereas the difficulties in developing new drugs for neglected diseases are more economical than biotechnological, repurposing approach with compounds already approved for clinical use by the regulatory agencies can be an interesting shortcut to a successful chemotherapeutic treatment for leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Leishmania/metabolismo , Leishmaniose/tratamento farmacológico , Animais , Antiprotozoários/química , Humanos , Leishmania/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico
11.
Mem Inst Oswaldo Cruz ; 112(1): 31-43, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27925020

RESUMO

A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites' physiology.


Assuntos
Cisteína/efeitos dos fármacos , Euglenozoários/efeitos dos fármacos , Heterópteros/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Animais , Western Blotting , Cisteína/metabolismo , Dipeptídeos , Euglenozoários/enzimologia , Euglenozoários/ultraestrutura , Citometria de Fluxo , Dose Letal Mediana , Microscopia Eletrônica , Glândulas Salivares/parasitologia
12.
Mem Inst Oswaldo Cruz ; 0: 0, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27355215

RESUMO

In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms.


Assuntos
Antifúngicos/farmacologia , Scedosporium/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Meios de Cultura/química , Testes de Sensibilidade Microbiana , Scedosporium/crescimento & desenvolvimento , Scedosporium/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Fatores de Tempo
13.
BMC Microbiol ; 15: 188, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415499

RESUMO

BACKGROUND: Angomonas deanei is a trypanosomatid parasite of insects that has a bacterial endosymbiont, which supplies amino acids and other nutrients to its host. Bacterium loss induced by antibiotic treatment of the protozoan leads to an aposymbiotic strain with increased need for amino acids and results in increased production of extracellular peptidases. In this work, a more detailed examination of A. deanei was conducted to determine the effects of endosymbiont loss on the host calpain-like proteins (CALPs), followed by testing of different calpain inhibitors on parasite proliferation. RESULTS: Western blotting showed the presence of different protein bands reactive to antibodies against calpain from Drosophila melanogaster (anti-Dm-calpain), lobster calpain (anti-CDPIIb) and cytoskeleton-associated calpain from Trypanosoma brucei (anti-CAP5.5), suggesting a possible modulation of CALPs influenced by the endosymbiont. In the cell-free culture supernatant of A. deanei wild type and aposymbiotic strains, a protein of 80 kDa cross-reacted with the anti-Dm-calpain antibody; however, no cross-reactivity was found with anti-CAP5.5 and anti-CDPIIb antibodies. A search in A. deanei genome for homologues of D. melanogaster calpain, T. brucei CAP5.5 and lobster CDPIIb calpain revealed the presence of hits with at least one calpain conserved domain and also with theoretical molecular mass consistent with the recognition by each antibody. No significant hit was observed in the endosymbiont genome, indicating that calpain molecules might be absent from the symbiont. Flow cytometry analysis of cells treated with the anti-calpain antibodies showed that a larger amount of reactive epitopes was located intracellularly. The reversible calpain inhibitor MDL28170 displayed a much higher efficacy in diminishing the growth of both strains compared to the non-competitive calpain inhibitor PD150606, while the irreversible calpain inhibitor V only marginally diminished the proliferation. CONCLUSIONS: Altogether, these results indicate that distinct calpain-like molecules are expressed by A. deanei, with a possible modulation in the expression influenced by the endosymbiont. In addition, treatment with MDL28170 affects the growth rate of both strains, as previously determined in the human pathogenic species Leishmania amazonensis and Trypanosoma cruzi, with whom A. deanei shares immunological and biochemical relationships.


Assuntos
Bactérias/crescimento & desenvolvimento , Calpaína/antagonistas & inibidores , Calpaína/biossíntese , Glicoproteínas/metabolismo , Simbiose , Trypanosomatina/crescimento & desenvolvimento , Trypanosomatina/microbiologia , Calpaína/genética , Trypanosomatina/efeitos dos fármacos , Trypanosomatina/genética
14.
Curr Med Chem ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38808714

RESUMO

Leishmaniasis is a neglected tropical disease caused by protozoa parasites from the Leishmania genus. Vertebrate hosts acquire the infection through the bite of a female sandfly, initiating a complex parasite development cycle. Contrary to previous beliefs regarding cats' resistance, these animals have recently been identified as potential reservoirs for leishmaniasis. Clinical symptoms in cats can manifest in diverse forms, including cutaneous, mucocutaneous, and visceral manifestations. The diagnosis of feline leishmaniasis is complicated by nonspecific symptoms and the relatively lower specificity of serological tests. The recommended treatment for feline leishmaniasis involves the administration of medications; however, success varies in each cat. This review aims to present cases of feline leishmaniasis, highlighting clinical symptoms, diagnostic methods, therapy schedules, and outcomes. Among the 24 cases documented in the available literature, 12 achieved successful treatment without relapses, resulting in a reduced parasite load and improved symptoms. Three cases responded well but presented persistent sequelae. Two feline leishmaniasis cases initially had treatment success but later experienced recurrences. Finally, no response was observed in seven cases, leading to the euthanasia of cats due to ineffectiveness or irregularities along the therapy. Conventional treatments, despite potential hepatotoxicity and nephrotoxicity, exhibit a high efficacy in reducing parasitic load, thereby improving clinical symptoms and increasing the life expectancy of affected cats. Nevertheless, consistent adherence is crucial, as interruptions may render the therapy ineffective and contribute to parasite resistance. Therefore, addressing the challenges associated with feline leishmaniasis treatment necessitates the development of new strategies to ensure a more effective and sustained approach.

15.
Curr Top Med Chem ; 22(16): 1297-1305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619311

RESUMO

The emergence of the pathogen Candida auris is a real concern worldwide, especially due to its multidrug resistance profile, besides the difficulties in establishing the correct identification by conventional laboratory methods and its capacity of causing outbreaks in healthcare settings. The limited arsenal of available antifungal drugs, coupled with the lack of momentum for the development of new reagents, represent a challenge in the management of such a pathogen. In this perspective, we have focused on discussing new, promising treatment options for C. auris infections. These novel drugs include an antifungal agent already approved for medical use in the United States of America, compounds that are already in clinical trials and those with potential for repurposing use against this important fungal pathogen.


Assuntos
Candida , Candidíase , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida auris , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Estados Unidos
16.
Front Cell Infect Microbiol ; 12: 804707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242719

RESUMO

The Trypanosomatidae family encompasses unicellular flagellates and obligate parasites of invertebrates, vertebrates, and plants. Trypanosomatids are traditionally divided into heteroxenous, characterized by the alternation of the life cycle between an insect vector and a plant or a vertebrate host, including humans being responsible for severe diseases; and monoxenous, which are presumably unique parasites of invertebrate hosts. Interestingly, studies reporting the occurrence of these monoxenous trypanosomatids in humans have been gradually increasing, either associated with Leishmania co-infection, or supposedly alone either in immunocompromised or even more sporadically in immunocompetent hosts. This review summarizes the first reports that raised the hypothesis that monoxenous trypanosomatids could be found in vertebrate hosts till the most current reports on the occurrence of Crithidia spp. alone in immunocompetent human patients.


Assuntos
Leishmania , Leishmaniose , Animais , Humanos , Leishmania/genética , Estágios do Ciclo de Vida , Plantas , Vertebrados
17.
Mem Inst Oswaldo Cruz ; 106(4): 507-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21739043

RESUMO

In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.


Assuntos
Antiprotozoários/farmacologia , Apoptose/genética , Fragmentação do DNA/efeitos dos fármacos , DNA de Protozoário/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Fosforilcolina/análogos & derivados , DNA de Protozoário/genética , Citometria de Fluxo , Fosforilcolina/farmacologia
18.
Cells ; 10(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535641

RESUMO

Calpains are calcium-dependent cysteine peptidases that were originally described in mammals and, thereafter, their homologues were identified in almost all known living organisms. The deregulated activity of these peptidases is associated with several pathologies and, consequently, huge efforts have been made to identify selective inhibitors. Trypanosomatids, responsible for life-threatening human diseases, possess a large and diverse family of calpain sequences in their genomes. Considering that the current therapy to treat trypanosomatid diseases is limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures, a repurposed approach with calpain inhibitors could be a shortcut to successful chemotherapy. However, there is a general lack of knowledge about calpain functions in these parasites and, currently, the proteolytic activity of these proteins is still an open question. Here, we highlight the current research and perspectives on trypanosomatid calpains, overview calpain description in these organisms, and explore the potential of targeting the calpain system as a therapeutic strategy. This review gathers the current knowledge about this fascinating family of peptidases as well as insights into the puzzle: are we unable to measure calpain activity in trypanosomatids, or are the functions of these proteins devoid of proteolytic activity in these parasites?


Assuntos
Calpaína/metabolismo , Expressão Gênica/genética , Proteínas/metabolismo , Animais , Humanos , Proteólise , Trypanosomatina
19.
Curr Top Med Chem ; 21(16): 1429-1438, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34727849

RESUMO

As a part of the efforts to quickly develop pharmaceutical treatments for COVID-19 through repurposing existing drugs, some researchers around the world have combined the recently released crystal structure of SARS-CoV-2 Mpro in complex with a covalently bonded inhibitor with virtual screening procedures employing molecular docking approaches. In this context, protease inhibitors (PIs) clinically available and currently used to treat infectious diseases, particularly viral ones, are relevant sources of promising drug candidates to inhibit the SARS-CoV-2 Mpro, a key viral enzyme involved in crucial events during its life cycle. In the present perspective, we summarized the published studies showing the promising use of HIV and HCV PIs as potential repurposing drugs against the SARS-CoV-2 Mpro.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteínas M de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , COVID-19/virologia , Proteínas M de Coronavírus/química , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/metabolismo , Humanos , Cinética , Modelos Moleculares , Terapia de Alvo Molecular , Inibidores de Proteases/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Termodinâmica
20.
Exp Parasitol ; 125(3): 256-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20138866

RESUMO

In this study, the cell-associated and extracellular peptidases of Trypanosoma cruzi grown in modified Roitman's complex (MRC) medium were analyzed by measuring peptidase activity in gelatin-containing zymograms. Our results showed that the cell-associated peptidases as well as peptidases extracellularly released by T. cruzi displayed two distinct proteolytic classes: cysteine and metallopeptidase activities. The major cysteine peptidase, cruzipain, synthesized by T. cruzi cells was detected in cellular parasite content, as a 50kDa reactive polypeptide, after probing with anti-cruzipain antibody. In addition, metallo-type peptidases belonging to the matrix metallopeptidase-9 (MMP-9) family were revealed, after Western blotting, as a 97kDa protein band in cellular extract and an 85kDa polypeptide in both cellular and secreted parasite extracts. The MMP-9-like activity present in cells and spent culture medium was immunoprecipitated by an anti-MMP-9 polyclonal antibody. The surface location of MMP-9-like proteins in T. cruzi was also evidenced by means of flow cytometry analysis. Furthermore, doxycycline that has direct MMP-9 inhibiting properties in vitro, inhibited MMP-9-like activities in gel zymography, immunoprecipitation and flow cytometry analyses. This is the first report of the presence of MMP-9-like molecules in T. cruzi. The presence of a matrix extracellular-degrading enzyme may play a role in the T. cruzi-host cell interaction, making this enzyme a potential target for future drug development against this pathogenic trypanosomatid.


Assuntos
Metaloproteinase 9 da Matriz/análise , Trypanosoma cruzi/enzimologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Imunoprecipitação , Metaloproteinase 9 da Matriz/química , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA