Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 147(6): 1309-23, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22153075

RESUMO

During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas dos Microtúbulos/análise , Microtúbulos/metabolismo , Mitose , Neoplasias/patologia , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Centríolos/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Neoplasias/metabolismo , Filogenia , Proteoma/análise , Alinhamento de Sequência , Fuso Acromático
2.
Cell ; 145(4): 513-28, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565611

RESUMO

Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.


Assuntos
Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Transdução de Sinais , Animais , Ataxina-10 , Centrossomo/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/metabolismo , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Doenças Renais Policísticas/genética , Retinose Pigmentar , Peixe-Zebra
3.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32940337

RESUMO

Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR) that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.


Assuntos
Simulação por Computador , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunogenética/métodos , Polimorfismo de Nucleotídeo Único , Receptores KIR/genética , Alelos , Frequência do Gene , Genótipo , Técnicas de Genotipagem/métodos , Haplótipos , Humanos , Fenótipo , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
4.
Proc Natl Acad Sci U S A ; 115(50): E11701-E11710, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463956

RESUMO

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti-PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


Assuntos
Genes Neoplásicos , Neoplasias/genética , Neoplasias/imunologia , Polimorfismo Genético , Aminopeptidases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Imunidade Celular/genética , Imunoterapia , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Neoplasias/terapia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia
5.
Genes Immun ; 20(2): 172-179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29550837

RESUMO

In clinical trials, a placebo response refers to improvement in disease symptoms arising from the psychological effect of receiving a treatment rather than the actual treatment under investigation. Previous research has reported genomic variation associated with the likelihood of observing a placebo response, but these studies have been limited in scope and have not been validated. Here, we analyzed whole-genome sequencing data from 784 patients undergoing placebo treatment in Phase III Asthma or Rheumatoid Arthritis trials to assess the impact of previously reported variation on patient outcomes in the placebo arms and to identify novel variants associated with the placebo response. Contrary to expectations based on previous reports, we did not observe any statistically significant associations between genomic variants and placebo treatment outcome. Our findings suggest that the biological origin of the placebo response is complex and likely to be variable between disease areas.


Assuntos
Ensaios Clínicos Fase III como Assunto/normas , Efeito Placebo , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Asma/tratamento farmacológico , Asma/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
6.
J Biol Chem ; 288(4): 2403-13, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23188824

RESUMO

To assess the consequences of endogenous mutant K-Ras, we analyzed the signaling and biological properties of a small panel of isogenic cell lines. These include the cancer cell lines DLD1, HCT116, and Hec1A, in which either the WT or mutant K-ras allele has been disrupted, and SW48 colorectal cancer cells and human mammary epithelial cells in which a single copy of mutant K-ras was introduced at its endogenous genomic locus. We find that single copy mutant K-Ras causes surprisingly modest activation of downstream signaling to ERK and Akt. In contrast, a negative feedback signaling loop to EGFR and N-Ras occurs in some, but not all, of these cell lines. Mutant K-Ras also had relatively minor effects on cell proliferation and cell migration but more dramatic effects on cell transformation as assessed by growth in soft agar. Surprisingly, knock-out of the wild type K-ras allele consistently increased growth in soft agar, suggesting tumor-suppressive properties of this gene under these conditions. Finally, we examined the effects of single copy mutant K-Ras on global gene expression. Although transcriptional programs triggered by mutant K-Ras were generally quite distinct in the different cell lines, there was a small number of genes that were consistently overexpressed, and these could be used to monitor K-Ras inhibition in a panel of human tumor cell lines. We conclude that there are conserved components of mutant K-Ras signaling and phenotypes but that many depend on cell context and environmental cues.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas ras/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Genes ras , Heterozigoto , Homozigoto , Humanos , Oncogenes/genética , Fenótipo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transcrição Gênica
7.
J Transl Med ; 11: 76, 2013 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-23522020

RESUMO

BACKGROUND: The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. METHODS: We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. RESULTS: The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. CONCLUSIONS: We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo/métodos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Biomarcadores Tumorais/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Indazóis/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Sulfonamidas/farmacologia
8.
Sci Rep ; 12(1): 5574, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35368043

RESUMO

Genome-wide association studies (GWAS) have identified many common variant loci associated with asthma susceptibility, but few studies investigate the genetics underlying moderate-to-severe asthma risk. Here, we present a whole-genome sequencing study comparing 3181 moderate-to-severe asthma patients to 3590 non-asthma controls. We demonstrate that asthma risk is genetically correlated with lung function measures and that this component of asthma risk is orthogonal to the eosinophil genetics that also contribute to disease susceptibility. We find that polygenic scores for reduced lung function are associated with younger asthma age of onset. Genome-wide, seven previously reported common asthma variant loci and one previously reported lung function locus, near THSD4, reach significance. We replicate association of the lung function locus in a recently published GWAS of moderate-to-severe asthma patients. We additionally replicate the association of a previously reported rare (minor allele frequency < 1%) coding variant in IL33 and show significant enrichment of rare variant burden in genes from common variant allergic disease loci. Our findings highlight the contribution of lung function genetics to moderate-to-severe asthma risk, and provide initial rare variant support for associations with moderate-to-severe asthma risk at several candidate genes from common variant loci.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Asma/genética , Predisposição Genética para Doença , Humanos , Pulmão , Sequenciamento Completo do Genoma
9.
PLoS Comput Biol ; 5(1): e1000270, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19180179

RESUMO

Metabolite concentrations can regulate gene expression, which can in turn regulate metabolic activity. The extent to which functionally related transcripts and metabolites show similar patterns of concentration changes, however, remains unestablished. We measure and analyze the metabolomic and transcriptional responses of Saccharomyces cerevisiae to carbon and nitrogen starvation. Our analysis demonstrates that transcripts and metabolites show coordinated response dynamics. Furthermore, metabolites and gene products whose concentration profiles are alike tend to participate in related biological processes. To identify specific, functionally related genes and metabolites, we develop an approach based on Bayesian integration of the joint metabolomic and transcriptomic data. This algorithm finds interactions by evaluating transcript-metabolite correlations in light of the experimental context in which they occur and the class of metabolite involved. It effectively predicts known enzymatic and regulatory relationships, including a gene-metabolite interaction central to the glycolytic-gluconeogenetic switch. This work provides quantitative evidence that functionally related metabolites and transcripts show coherent patterns of behavior on the genome scale and lays the groundwork for building gene-metabolite interaction networks directly from systems-level data.


Assuntos
Genômica/métodos , Metabolômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Algoritmos , Teorema de Bayes , Vias Biossintéticas , Carbono/metabolismo , Cromatografia Líquida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Fúngicos , Glicogenólise , Glicólise , Nitrogênio/metabolismo , Estatísticas não Paramétricas , Espectrometria de Massas em Tandem
10.
Micromachines (Basel) ; 11(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858951

RESUMO

Reliable packaging for implantable neural prosthetic devices in body fluids is a long-standing challenge for devices' chronic applications. This work studied the stability of Parylene C (PA), SiO2, and Si3N4 packages and coating strategies on tungsten wires using accelerated, reactive aging tests in three solutions: pH 7.4 phosphate-buffered saline (PBS), PBS + 30 mM H2O2, and PBS + 150 mM H2O2. Different combinations of coating thicknesses and deposition methods were studied at various testing temperatures. Analysis of the preliminary data shows that the pinholes/defects, cracks, and interface delamination are the main attributes of metal erosion and degradation in reactive aging solutions. Failure at the interface of package and metal is the dominating factor in the wire samples with open tips.

11.
Mol Biol Cell ; 16(5): 2503-17, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15758028

RESUMO

We studied the physiological response to glucose limitation in batch and steady-state (chemostat) cultures of Saccharomyces cerevisiae by following global patterns of gene expression. Glucose-limited batch cultures of yeast go through two sequential exponential growth phases, beginning with a largely fermentative phase, followed by an essentially completely aerobic use of residual glucose and evolved ethanol. Judging from the patterns of gene expression, the state of the cells growing at steady state in glucose-limited chemostats corresponds most closely with the state of cells in batch cultures just before they undergo this "diauxic shift." Essentially the same pattern was found between chemostats having a fivefold difference in steady-state growth rate (the lower rate approximating that of the second phase respiratory growth rate in batch cultures). Although in both cases the cells in the chemostat consumed most of the glucose, in neither case did they seem to be metabolizing it primarily through respiration. Although there was some indication of a modest oxidative stress response, the chemostat cultures did not exhibit the massive environmental stress response associated with starvation that also is observed, at least in part, during the diauxic shift in batch cultures. We conclude that despite the theoretical possibility of a switch to fully aerobic metabolism of glucose in the chemostat under conditions of glucose scarcity, homeostatic mechanisms are able to carry out metabolic adjustment as if fermentation of the glucose is the preferred option until the glucose is entirely depleted. These results suggest that some aspect of actual starvation, possibly a component of the stress response, may be required for triggering the metabolic remodeling associated with the diauxic shift.


Assuntos
Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Aminoácidos/metabolismo , Evolução Molecular Direcionada , Etanol/metabolismo , Fermentação , Expressão Gênica , Perfilação da Expressão Gênica , Genes Fúngicos , Glicólise , Homeostase , Cinética , Modelos Biológicos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese
12.
Lancet Respir Med ; 6(8): 603-614, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29891356

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) risk has a strong genetic component. Studies have implicated variations at several loci, including TERT, surfactant genes, and a single nucleotide polymorphism at chr11p15 (rs35705950) in the intergenic region between TOLLIP and MUC5B. Patients with IPF who have risk alleles at rs35705950 have longer survival from the time of IPF diagnosis than do patients homozygous for the non-risk allele, whereas patients with shorter telomeres have shorter survival times. We aimed to assess whether rare protein-altering variants in genes regulating telomere length are enriched in patients with IPF homozygous for the non-risk alleles at rs35705950. METHODS: Between Nov 1, 2014, and Nov 1, 2016, we assessed blood samples from patients aged 40 years or older and of European ancestry with sporadic IPF from three international phase 3 clinical trials (INSPIRE, CAPACITY, ASCEND), one phase 2 study (RIFF), and US-based observational studies (Vanderbilt Clinical Interstitial Lung Disease Registry and the UCSF Interstitial Lung Disease Clinic registry cohorts) at the Broad Institute (Cambridge, MA, USA) and Human Longevity (San Diego, CA, USA). We also assessed blood samples from non-IPF controls in several clinical trials. We did whole-genome sequencing to assess telomere length and identify rare protein-altering variants, stratified by rs35705950 genotype. We also assessed rare functional variation in TERT exons and compared telomere length and disease progression across genotypes. FINDINGS: We assessed samples from 1510 patients with IPF and 1874 non-IPF controls. 30 (3%) of 1046 patients with an rs35705950 risk allele had a rare protein-altering variant in TERT compared with 34 (7%) of 464 non-risk allele carriers (odds ratio 0·40 [95% CI 0·24-0·66], p=0·00039). Subsequent analyses identified enrichment of rare protein-altering variants in PARN and RTEL1, and rare variation in TERC in patients with IPF compared with controls. We expanded our study population to provide a more accurate estimation of rare variant frequency in these four loci, and to calculate telomere length. The proportion of patients with at least one rare variant in TERT, PARN, TERC, or RTEL1 was higher in patients with IPF than in controls (149 [9%] of 1739 patients vs 205 [2%] of 8645 controls, p=2·44 × 10-8). Patients with IPF who had a variant in any of the four identified telomerase component genes had telomeres that were 3·69-16·10% shorter than patients without a variant in any of the four genes and had an earlier mean age of disease onset than patients without one or more variants (65·1 years [SD 7·8] vs 67·1 years [7·9], p=0·004). In the placebo arms of clinical trials, shorter telomeres were significantly associated with faster disease progression (1·7% predicted forced vital capacity per kb per year, p=0·002). Pirfenidone had treatment benefit regardless of telomere length (p=4·24 × 10-8 for telomere length lower than the median, p=0·0044 for telomere length greater than the median). INTERPRETATION: Rare protein-altering variants in TERT, PARN, TERC, and RTEL1 are enriched in patients with IPF compared with controls, and, in the case of TERT, particularly in individuals without a risk allele at the rs35705950 locus. This suggests that multiple genetic factors contribute to sporadic IPF, which might implicate distinct mechanisms of pathogenesis and disease progression. FUNDING: Genentech, National Institutes of Health, Francis Family Foundation, Pulmonary Fibrosis Foundation, Nina Ireland Program for Lung Health, US Department of Veterans Affairs.


Assuntos
Fibrose Pulmonar Idiopática/sangue , Mucina-5B/sangue , Homeostase do Telômero/genética , Idoso , Estudos de Casos e Controles , Ensaios Clínicos como Assunto , Feminino , Humanos , Fibrose Pulmonar Idiopática/genética , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
13.
Genetics ; 173(3): 1813-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16624899

RESUMO

We demonstrate a new method, microarray-assisted bulk segregant analysis, for mapping traits in yeast by genotyping pooled segregants. We apply a probabilistic model to the progeny of a single cross and as little as two microarray hybridizations to reliably map an auxotrophic marker, a Mendelian trait, and a major-effect quantitative trait locus.


Assuntos
Mapeamento Cromossômico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Locos de Características Quantitativas , Saccharomyces cerevisiae/genética , Segregação de Cromossomos , Genótipo , Probabilidade
14.
Mol Biol Cell ; 15(9): 4089-104, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15240820

RESUMO

We studied the physiological response to limitation by diverse nutrients in batch and steady-state (chemostat) cultures of S. cerevisiae. We found that the global pattern of transcription in steady-state cultures in limiting phosphate or sulfate is essentially identical to that of batch cultures growing in the same medium just before the limiting nutrient is completely exhausted. The massive stress response and complete arrest of the cell cycle that occurs when nutrients are fully exhausted in batch cultures is not observed in the chemostat, indicating that the cells in the chemostat are "poor, not starving." Similar comparisons using leucine or uracil auxotrophs limited on leucine or uracil again showed patterns of gene expression in steady-state closely resembling those of corresponding batch cultures just before they exhaust the nutrient. Although there is also a strong stress response in the auxotrophic batch cultures, cell cycle arrest, if it occurs at all, is much less uniform. Many of the differences among the patterns of gene expression between the four nutrient limitations are interpretable in light of known involvement of the genes in stress responses or in the regulation or execution of particular metabolic pathways appropriate to the limiting nutrient. We conclude that cells adjust their growth rate to nutrient availability and maintain homeostasis in the same way in batch and steady state conditions; cells in steady-state cultures are in a physiological condition normally encountered in batch cultures.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Ciclo Celular , Meios de Cultura , Perfilação da Expressão Gênica , Genes Fúngicos , Genômica , Homeostase , Leucina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/metabolismo , Uracila/metabolismo
15.
Cancer Res ; 77(6): 1439-1452, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108512

RESUMO

Notch ligands signal through one of four receptors on neighboring cells to mediate cell-cell communication and control cell fate, proliferation, and survival. Although aberrant Notch activation has been implicated in numerous malignancies, including breast cancer, the importance of individual receptors in distinct breast cancer subtypes and the mechanisms of receptor activation remain unclear. Using a novel antibody to detect active NOTCH3, we report here that NOTCH3 signals constitutively in a panel of basal breast cancer cell lines and in more than one third of basal tumors. Selective inhibition of individual ligands revealed that this signal does not require canonical ligand induction. A NOTCH3 antagonist antibody inhibited growth of basal lines, whereas a NOTCH3 agonist antibody enhanced the transformed phenotype in vitro and in tumor xenografts. Transcriptomic analyses generated a Notch gene signature that included Notch pathway components, the oncogene c-Myc, and the mammary stem cell regulator Id4 This signature drove clustering of breast cancer cell lines and tumors into the common subtypes and correlated with the basal classification. Our results highlight an unexpected ligand-independent induction mechanism and suggest that constitutive NOTCH3 signaling can drive an oncogenic program in a subset of basal breast cancers. Cancer Res; 77(6); 1439-52. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Neoplasia de Células Basais/patologia , Receptor Notch3/metabolismo , Animais , Apoptose , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos SCID , Neoplasia de Células Basais/metabolismo , Receptor Notch3/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Methods Mol Biol ; 1418: 283-334, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27008021

RESUMO

The programs GMAP and GSNAP, for aligning RNA-Seq and DNA-Seq datasets to genomes, have evolved along with advances in biological methodology to handle longer reads, larger volumes of data, and new types of biological assays. The genomic representation has been improved to include linear genomes that can compare sequences using single-instruction multiple-data (SIMD) instructions, compressed genomic hash tables with fast access using SIMD instructions, handling of large genomes with more than four billion bp, and enhanced suffix arrays (ESAs) with novel data structures for fast access. Improvements to the algorithms have included a greedy match-and-extend algorithm using suffix arrays, segment chaining using genomic hash tables, diagonalization using segmental hash tables, and nucleotide-level dynamic programming procedures that use SIMD instructions and eliminate the need for F-loop calculations. Enhancements to the functionality of the programs include standardization of indel positions, handling of ambiguous splicing, clipping and merging of overlapping paired-end reads, and alignments to circular chromosomes and alternate scaffolds. The programs have been adapted for use in pipelines by integrating their usage into R/Bioconductor packages such as gmapR and HTSeqGenie, and these pipelines have facilitated the discovery of numerous biological phenomena.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Genoma , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Edição de RNA , Splicing de RNA , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas , Fatores de Tempo
17.
EBioMedicine ; 2(7): 730-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26288846

RESUMO

Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/ßKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/ßKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/ßKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/ßKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/ßKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.


Assuntos
Tecido Adiposo Marrom/metabolismo , Anticorpos Biespecíficos/farmacologia , Insulina/farmacologia , Proteínas de Membrana/agonistas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Adiponectina/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Humanos , Proteínas Klotho , Macaca fascicularis , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ligação Proteica/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Termogênese/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
18.
Nat Biotechnol ; 33(3): 306-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25485619

RESUMO

Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines. We report comprehensive analyses of transcriptome features including gene expression, mutations, gene fusions and expression of non-human sequences. Of the 2,200 gene fusions catalogued, 1,435 consist of genes not previously found in fusions, providing many leads for further investigation. We combine multiple genome and transcriptome features in a pathway-based approach to enhance prediction of response to targeted therapeutics. Our results provide a valuable resource for studies that use cancer cell lines.


Assuntos
Neoplasias/genética , Transcrição Gênica , Sequência de Bases , Linhagem Celular Tumoral , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mutação/genética , Fusão Oncogênica/genética , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único/genética
19.
Cell Cycle ; 12(4): 625-34, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23324396

RESUMO

Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated ß-galactosidase, DNA damage and p53 or p16 (INK4a) expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.


Assuntos
Transformação Celular Neoplásica/genética , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphA3 , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
20.
Clin Cancer Res ; 19(13): 3681-92, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685835

RESUMO

PURPOSE: The aim of this study was to identify conserved pharmacodynamic and potential predictive biomarkers of response to anti-VEGF therapy using gene expression profiling in preclinical tumor models and in patients. EXPERIMENTAL DESIGN: Surrogate markers of VEGF inhibition [VEGF-dependent genes or VEGF-dependent vasculature (VDV)] were identified by profiling gene expression changes induced in response to VEGF blockade in preclinical tumor models and in human biopsies from patients treated with anti-VEGF monoclonal antibodies. The potential value of VDV genes as candidate predictive biomarkers was tested by correlating high or low VDV gene expression levels in pretreatment clinical samples with the subsequent clinical efficacy of bevacizumab (anti-VEGF)-containing therapy. RESULTS: We show that VDV genes, including direct and more distal VEGF downstream endothelial targets, enable detection of VEGF signaling inhibition in mouse tumor models and human tumor biopsies. Retrospective analyses of clinical trial data indicate that patients with higher VDV expression in pretreatment tumor samples exhibited improved clinical outcome when treated with bevacizumab-containing therapies. CONCLUSIONS: In this work, we identified surrogate markers (VDV genes) for in vivo VEGF signaling in tumors and showed clinical data supporting a correlation between pretreatment VEGF bioactivity and the subsequent efficacy of anti-VEGF therapy. We propose that VDV genes are candidate biomarkers with the potential to aid the selection of novel indications as well as patients likely to respond to anti-VEGF therapy. The data presented here define a diagnostic biomarker hypothesis based on translational research that warrants further evaluation in additional retrospective and prospective trials.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Bevacizumab , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/mortalidade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA