Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 23(12): 2369-2377, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34341521

RESUMO

PURPOSE: Pathogenic variants in GNPTAB and GNPTG, encoding different subunits of GlcNAc-1-phosphotransferase, cause mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma. This study aimed to investigate the cellular and molecular bases underlying skeletal abnormalities in patients with MLII and MLIII. METHODS: We analyzed bone biopsies from patients with MLIII alpha/beta or MLIII gamma by undecalcified histology and histomorphometry. The skeletal status of Gnptgko and Gnptab-deficient mice was determined and complemented by biochemical analysis of primary Gnptgko bone cells. The clinical relevance of the mouse data was underscored by systematic urinary collagen crosslinks quantification in patients with MLII, MLIII alpha/beta, and MLIII gamma. RESULTS: The analysis of iliac crest biopsies revealed that bone remodeling is impaired in patients with GNPTAB-associated MLIII alpha/beta but not with GNPTG-associated MLIII gamma. Opposed to Gnptab-deficient mice, skeletal remodeling is not affected in Gnptgko mice. Most importantly, patients with variants in GNPTAB but not in GNPTG exhibited increased bone resorption. CONCLUSION: The gene-specific impact on bone remodeling in human individuals and in mice proposes distinct molecular functions of the GlcNAc-1-phosphotransferase subunits in bone cells. We therefore appeal for the necessity to classify MLIII based on genetic in addition to clinical criteria to ensure appropriate therapy.


Assuntos
Reabsorção Óssea , Mucolipidoses , Transferases (Outros Grupos de Fosfato Substituídos) , Animais , Humanos , Camundongos , Mucolipidoses/genética , Mucolipidoses/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética
2.
J Am Soc Nephrol ; 31(8): 1796-1814, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641396

RESUMO

BACKGROUND: The mechanisms balancing proteostasis in glomerular cells are unknown. Mucolipidosis (ML) II and III are rare lysosomal storage disorders associated with mutations of the Golgi-resident GlcNAc-1-phosphotransferase, which generates mannose 6-phosphate residues on lysosomal enzymes. Without this modification, lysosomal enzymes are missorted to the extracellular space, which results in lysosomal dysfunction of many cell types. Patients with MLII present with severe skeletal abnormalities, multisystemic symptoms, and early death; the clinical course in MLIII is less progressive. Despite dysfunction of a major degradative pathway, renal and glomerular involvement is rarely reported, suggesting organ-specific compensatory mechanisms. METHODS: MLII mice were generated and compared with an established MLIII model to investigate the balance of protein synthesis and degradation, which reflects glomerular integrity. Proteinuria was assessed in patients. High-resolution confocal microscopy and functional assays identified proteins to deduce compensatory modes of balancing proteostasis. RESULTS: Patients with MLII but not MLIII exhibited microalbuminuria. MLII mice showed lysosomal enzyme missorting and several skeletal alterations, indicating that they are a useful model. In glomeruli, both MLII and MLIII mice exhibited reduced levels of lysosomal enzymes and enlarged lysosomes with abnormal storage material. Nevertheless, neither model had detectable morphologic or functional glomerular alterations. The models rebalance proteostasis in two ways: MLII mice downregulate protein translation and increase the integrated stress response, whereas MLIII mice upregulate the proteasome system in their glomeruli. Both MLII and MLIII downregulate the protein complex mTORC1 (mammalian target of rapamycin complex 1) signaling, which decreases protein synthesis. CONCLUSIONS: Severe lysosomal dysfunction leads to microalbuminuria in some patients with mucolipidosis. Mouse models indicate distinct compensatory pathways that balance proteostasis in MLII and MLIII.


Assuntos
Glomérulos Renais/metabolismo , Mucolipidoses/metabolismo , Proteinúria/prevenção & controle , Proteostase/fisiologia , Albuminúria/etiologia , Animais , Nitrogênio da Ureia Sanguínea , Células Cultivadas , Modelos Animais de Doenças , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucolipidoses/complicações , Complexo de Endopeptidases do Proteassoma/fisiologia
3.
J Biol Chem ; 294(24): 9592-9604, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040178

RESUMO

Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.


Assuntos
Cerebelo/metabolismo , Lipídeos/análise , Lisossomos/metabolismo , Glicoproteínas de Membrana/deficiência , Transporte Proteico , Proteínas/metabolismo , Proteoma/análise , Animais , Hidrolases/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Receptores da Transferrina/metabolismo
4.
Mol Cell Proteomics ; 17(8): 1612-1626, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29773673

RESUMO

Targeting of soluble lysosomal enzymes requires mannose 6-phosphate (M6P) signals whose formation is initiated by the hexameric N-acetylglucosamine (GlcNAc)-1-phosphotransferase complex (α2ß2γ2). Upon proteolytic cleavage by site-1 protease, the α/ß-subunit precursor is catalytically activated but the functions of γ-subunits (Gnptg) in M6P modification of lysosomal enzymes are unknown. To investigate this, we analyzed the Gnptg expression in mouse tissues, primary cultured cells, and in Gnptg reporter mice in vivo, and found high amounts in the brain, eye, kidney, femur, vertebra and fibroblasts. Consecutively we performed comprehensive quantitative lysosomal proteome and M6P secretome analysis in fibroblasts of wild-type and Gnptgko mice mimicking the lysosomal storage disorder mucolipidosis III. Although the cleavage of the α/ß-precursor was not affected by Gnptg deficiency, the GlcNAc-1-phosphotransferase activity was significantly reduced. We purified lysosomes and identified 29 soluble lysosomal proteins by SILAC-based mass spectrometry exhibiting differential abundance in Gnptgko fibroblasts which was confirmed by Western blotting and enzymatic activity analysis for selected proteins. A subset of these lysosomal enzymes show also reduced M6P modifications, fail to reach lysosomes and are secreted, among them α-l-fucosidase and arylsulfatase B. Low levels of these enzymes correlate with the accumulation of non-degraded fucose-containing glycostructures and sulfated glycosaminoglycans in Gnptgko lysosomes. Incubation of Gnptgko fibroblasts with arylsulfatase B partially rescued glycosaminoglycan storage. Combinatorial treatments with other here identified missorted enzymes of this degradation pathway might further correct glycosaminoglycan accumulation and will provide a useful basis to reveal mechanisms of selective, Gnptg-dependent formation of M6P residues on lysosomal proteins.


Assuntos
Enzimas/metabolismo , Lisossomos/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Proteoma/metabolismo , Animais , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Marcação por Isótopo , Manosefosfatos/metabolismo , Camundongos Knockout , Subunidades Proteicas/metabolismo , Proteólise , Especificidade por Substrato
5.
Hum Mol Genet ; 26(3): 538-551, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062662

RESUMO

The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Estabilidade Enzimática/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mitocôndrias/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Substituição de Aminoácidos/genética , Encefalopatias Metabólicas/patologia , Regulação Enzimológica da Expressão Gênica/genética , Glutaril-CoA Desidrogenase/química , Células HeLa , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Mutação de Sentido Incorreto/genética , Conformação Proteica , Multimerização Proteica/genética
6.
Mol Cell Proteomics ; 16(3): 438-450, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28062798

RESUMO

The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver.


Assuntos
Hidrolases/metabolismo , Lisossomos/metabolismo , Manosefosfatos/metabolismo , Mucolipidoses/enzimologia , Proteoma/análise , Animais , Células Cultivadas , Cromatografia Líquida , Modelos Animais de Doenças , Regulação da Expressão Gênica , Fígado/metabolismo , Espectrometria de Massas , Camundongos , Mucolipidoses/genética , Fosfotransferases/deficiência
7.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2162-2168, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28693924

RESUMO

The Golgi-resident site-1 protease (S1P) is a key regulator of cholesterol homeostasis and ER stress responses by converting latent transcription factors sterol regulatory element binding proteins (SREPBs) and activating transcription factor 6 (ATF6), as well as viral glycoproteins to their active forms. S1P is also essential for lysosome biogenesis via proteolytic activation of the hexameric GlcNAc-1-phosphotransferase complex required for modification of newly synthesized lysosomal enzymes with the lysosomal targeting signal, mannose 6-phosphate. In the absence of S1P, the catalytically inactive α/ß-subunit precursor of GlcNAc-1-phosphotransferase fails to be activated and results in missorting of newly synthesized lysosomal enzymes, and lysosomal accumulation of non-degraded material, which are biochemical features of defective GlcNAc-1-phosphotransferase subunits and the associated pediatric lysosomal diseases mucolipidosis type II and III. The early embryonic death of S1P-deficient mice and the importance of various S1P-regulated biological processes, including lysosomal homeostasis, cautioned for clinical inhibition of S1P. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Assuntos
Colesterol/metabolismo , Mucolipidoses/genética , Pró-Proteína Convertases/genética , Proteólise , Serina Endopeptidases/genética , Animais , Colesterol/genética , Estresse do Retículo Endoplasmático/genética , Complexo de Golgi/metabolismo , Humanos , Lisossomos/genética , Camundongos , Mucolipidoses/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética
8.
PLoS Genet ; 11(8): e1005454, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26284655

RESUMO

Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.


Assuntos
Autofagia , Lisossomos/fisiologia , Proteínas/genética , Paraplegia Espástica Hereditária/patologia , Animais , Células Cultivadas , Cerebelo/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Motor/patologia , Células de Purkinje/patologia , Paraplegia Espástica Hereditária/genética
9.
Traffic ; 16(10): 1127-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219725

RESUMO

The lysosomal integral membrane protein type 2 (LIMP-2/SCARB2) has been described as a mannose 6-phosphate (M6P)-independent trafficking receptor for ß-glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP-2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP-2 with the cation-independent M6P receptor (MPR) results in M6P-dependent targeting of LIMP-2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P-dependent delivery of LIMP-2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP-2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P-forming N-acetylglucosamine (GlcNAc)-1-phosphotransferase, LIMP-2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP-2 levels within lysosomes purified from liver of wild-type (wt) and GlcNAc-1-phosphotransferase-defective mice. Heterologous expression of the luminal domain of LIMP-2 in wild-type, LIMP-2-deficient and GlcNAc-1-phosphotransferase-defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP-2. Finally, cathepsin Z, a known GlcNAc-1-phosphotransferase substrate, but not LIMP-2, could be precipitated with M6P-specific antibodies. These data prove M6P-independent lysosomal sorting of LIMP-2 and subsequently GC in vivo.


Assuntos
Antígenos CD36/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Manosefosfatos/metabolismo , Microssomos Hepáticos/metabolismo , Transporte Proteico/fisiologia , Animais , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Glucosilceramidase/metabolismo , Camundongos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
10.
Traffic ; 16(7): 743-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25786328

RESUMO

Most lysosomal enzymes require mannose 6-phosphate (M6P) residues for efficient receptor-mediated lysosomal targeting. Although the lack of M6P residues results in missorting and hypersecretion, selected lysosomal enzymes reach normal levels in lysosomes of various cell types, suggesting the existence of M6P-independent transport routes. Here, we quantify the lysosomal proteome in M6P-deficient mouse fibroblasts (PT(ki)) using Stable Isotope Labeling by Amino acids in Cell culture (SILAC)-based comparative mass spectrometry, and find unchanged amounts of 20% of lysosomal enzymes, including cathepsins D and B (Ctsd and Ctsb). Examination of fibroblasts from a new mouse line lacking both M6P and sortilin, a candidate for M6P-independent transport of lysosomal enzymes, revealed that sortilin does not act as cargo receptor for Ctsb and Ctsd. Using fibroblast lines deficient for endocytic lipoprotein receptors, we could demonstrate that both LDL receptor and Lrp1 mediate the internalization of non-phosphorylated Ctsb and Ctsd. Furthermore, the presence of Lrp1 inhibitor increased the secretion of Ctsd from PT(ki) cells. These findings establish Lrp1 and LDL receptors in M6P-independent secretion-recapture targeting mechanism for lysosomal enzymes.


Assuntos
Lisossomos/metabolismo , Manosefosfatos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Catepsinas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Receptores de LDL/antagonistas & inibidores , Receptores de LDL/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
11.
Biochim Biophys Acta ; 1862(9): 1570-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27239697

RESUMO

Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis.


Assuntos
Ossos Faciais/crescimento & desenvolvimento , Lisossomos/enzimologia , Manosefosfatos/metabolismo , Mucolipidoses/metabolismo , Odontogênese/fisiologia , Crânio/crescimento & desenvolvimento , Animais , Desenvolvimento Ósseo/fisiologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Gengiva/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mucolipidoses/genética , Mucolipidoses/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética
12.
Hum Mol Genet ; 24(23): 6826-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26385638

RESUMO

The multimeric GlcNAc-1-phosphotransferase complex catalyzes the formation of mannose 6-phosphate recognition marker on lysosomal enzymes required for receptor-mediated targeting to lysosomes. GNPTAB and GNPTG encode the α/ß-subunit precursor membrane proteins and the soluble γ-subunits, respectively. Performing extensive mutational analysis, we identified the binding regions of γ-subunits in a previously uncharacterized domain of α-subunits comprising residues 535-698, named GNPTG binding (GB) domain. Both the deletion of GB preventing γ-subunit binding and targeted deletion of GNPTG led to significant reduction in GlcNAc-1-phosphotransferase activity. We also identified cysteine 70 in α-subunits to be involved in covalent homodimerization of α-subunits which is, however, required neither for interaction with γ-subunits nor for catalytic activity of the enzyme complex. Finally, binding assays using various γ-subunit mutants revealed that residues 130-238 interact with glycosylated α-subunits suggesting a role for the mannose 6-phosphate receptor homology domain in α-subunit binding. These studies provide new insight into the assembly of the GlcNAc-1-phosphotransferase complex, and the functions of distinct domains of the α- and γ-subunits.


Assuntos
Lisossomos/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , Glicosilação , Humanos , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Transferases (Outros Grupos de Fosfato Substituídos)/genética
13.
Hum Mol Genet ; 24(12): 3497-505, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25788519

RESUMO

Mucolipidosis II (MLII) and III alpha/beta are autosomal-recessive diseases of childhood caused by mutations in GNPTAB encoding the α/ß-subunit precursor protein of the GlcNAc-1-phosphotransferase complex. This enzyme modifies lysosomal hydrolases with mannose 6-phosphate targeting signals. Upon arrival in the Golgi apparatus, the newly synthesized α/ß-subunit precursor is catalytically activated by site-1 protease (S1P). Here we performed comprehensive expression studies of GNPTAB mutations, including two novel mutations T644M and T1223del, identified in Brazilian MLII/MLIII alpha/beta patients. We show that the frameshift E757KfsX1 and the non-sense R587X mutations result in the retention of enzymatically inactive truncated precursor proteins in the endoplasmic reticulum (ER) due to loss of cytosolic ER exit motifs consistent with a severe clinical phenotype in homozygosity. The luminal missense mutations, C505Y, G575R and T644M, partially impaired ER exit and proteolytic activation in accordance with less severe MLIII alpha/beta disease symptoms. Analogous to the previously characterized S399F mutant, we found that the missense mutation I403T led to retention in the ER and loss of catalytic activity. Substitution of further conserved residues in stealth domain 2 (I346 and W357) revealed similar biochemical properties and allowed us to define a putative binding site for accessory proteins required for ER exit of α/ß-subunit precursors. Interestingly, the analysis of the Y937_M972del mutant revealed partial Golgi localization and formation of abnormal inactive ß-subunits generated by S1P which correlate with a clinical MLII phenotype. Expression analyses of mutations identified in patients underline genotype-phenotype correlations in MLII/MLIII alpha/beta and provide novel insights into structural requirements of proper GlcNAc-1-phosphotransferase activity.


Assuntos
Estudos de Associação Genética , Mutação , Pró-Proteína Convertases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Serina Endopeptidases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Masculino , Pró-Proteína Convertases/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteólise , Serina Endopeptidases/genética , Transferases (Outros Grupos de Fosfato Substituídos)/química
14.
Hum Mol Genet ; 24(24): 7075-86, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26427607

RESUMO

Mucopolysaccharidosis-I (MPS-I) is a lysosomal storage disease (LSD) caused by inactivating mutations of IDUA, encoding the glycosaminoglycan-degrading enzyme α-l-iduronidase. Although MPS-I is associated with skeletal abnormalities, the impact of IDUA deficiency on bone remodeling is poorly defined. Here we report that Idua-deficient mice progressively develop a high bone mass phenotype with pathological lysosomal storage in cells of the osteoblast lineage. Histomorphometric quantification identified shortening of bone-forming units and reduced osteoclast numbers per bone surface. This phenotype was not transferable into wild-type mice by bone marrow transplantation (BMT). In contrast, the high bone mass phenotype of Idua-deficient mice was prevented by BMT from wild-type donors. At the cellular level, BMT did not only normalize defects of Idua-deficient osteoblasts and osteocytes but additionally caused increased osteoclastogenesis. Based on clinical observations in an individual with MPS-I, previously subjected to BMT and enzyme replacement therapy (ERT), we treated Idua-deficient mice accordingly and found that combining both treatments normalized all histomorphometric parameters of bone remodeling. Our results demonstrate that BMT and ERT profoundly affect skeletal remodeling of Idua-deficient mice, thereby suggesting that individuals with MPS-I should be monitored for their bone remodeling status, before and after treatment, to avoid long-term skeletal complications.


Assuntos
Remodelação Óssea , Iduronidase/uso terapêutico , Mucopolissacaridose I/fisiopatologia , Mucopolissacaridose I/terapia , Animais , Transplante de Medula Óssea , Proliferação de Células , Células Cultivadas , Criança , Terapia Combinada , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Feminino , Humanos , Iduronidase/deficiência , Iduronidase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose I/patologia , Osteoclastos/enzimologia
15.
Glycobiology ; 26(2): 181-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26503547

RESUMO

The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition.


Assuntos
Manosefosfatos/química , Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Anticorpos de Cadeia Única/metabolismo
16.
PLoS Genet ; 9(12): e1003988, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367272

RESUMO

Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.


Assuntos
Proteínas de Transporte/genética , Endossomos/metabolismo , Lisossomos/metabolismo , Degeneração Retiniana/genética , Paraplegia Espástica Hereditária/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/metabolismo , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Endossomos/patologia , Humanos , Lisossomos/genética , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Mutação , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia
17.
J Lipid Res ; 56(8): 1625-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108224

RESUMO

Site-1 protease (S1P) cleaves membrane-bound lipogenic sterol regulatory element-binding proteins (SREBPs) and the α/ß-subunit precursor protein of the N-acetylglucosamine-1-phosphotransferase forming mannose 6-phosphate (M6P) targeting markers on lysosomal enzymes. The translocation of SREBPs from the endoplasmic reticulum (ER) to the Golgi-resident S1P depends on the intracellular sterol content, but it is unknown whether the ER exit of the α/ß-subunit precursor is regulated. Here, we investigated the effect of cholesterol depletion (atorvastatin treatment) and elevation (LDL overload) on ER-Golgi transport, S1P-mediated cleavage of the α/ß-subunit precursor, and the subsequent targeting of lysosomal enzymes along the biosynthetic and endocytic pathway to lysosomes. The data showed that the proteolytic cleavage of the α/ß-subunit precursor into mature and enzymatically active subunits does not depend on the cholesterol content. In either treatment, lysosomal enzymes are normally decorated with M6P residues, allowing the proper sorting to lysosomes. In addition, we found that, in fibroblasts of mucolipidosis type II mice and Niemann-Pick type C patients characterized by aberrant cholesterol accumulation, the proteolytic cleavage of the α/ß-subunit precursor was not impaired. We conclude that S1P substrate-dependent regulatory mechanisms for lipid synthesis and biogenesis of lysosomes are different.


Assuntos
Lipogênese/genética , Lisossomos/metabolismo , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Motivos de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Fibroblastos/citologia , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Camundongos , Pró-Proteína Convertases/química , Transporte Proteico , Proteólise , Receptores de LDL/metabolismo , Serina Endopeptidases/química , Transcrição Gênica , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
18.
J Biol Chem ; 289(40): 27992-8005, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25135642

RESUMO

Arylsulfatase G (ARSG) is a recently identified lysosomal sulfatase that was shown to be responsible for the degradation of 3-O-sulfated N-sulfoglucosamine residues of heparan sulfate glycosaminoglycans. Deficiency of ARSG leads to a new type of mucopolysaccharidosis, as described in a mouse model. Here, we provide a detailed molecular characterization of the endogenous murine enzyme. ARSG is expressed and proteolytically processed in a tissue-specific manner. The 63-kDa single-chain precursor protein localizes to pre-lysosomal compartments and tightly associates with organelle membranes, most likely the endoplasmic reticulum. In contrast, proteolytically processed ARSG fragments of 34-, 18-, and 10-kDa were found in lysosomal fractions and lost their membrane association. The processing sites and a disulfide bridge between the 18- and 10-kDa chains could be roughly mapped. Proteases participating in the processing were identified as cathepsins B and L. Proteolytic processing is dispensable for hydrolytic sulfatase activity in vitro. Lysosomal transport of ARSG in the liver is independent of mannose 6-phosphate, sortilin, and Limp2. However, mutation of glycosylation site N-497 abrogates transport of ARSG to lysosomes in human fibrosarcoma cells, due to impaired mannose 6-phosphate modification.


Assuntos
Arilsulfatases/genética , Arilsulfatases/metabolismo , Lisossomos/enzimologia , Motivos de Aminoácidos , Animais , Arilsulfatases/química , Glicosilação , Humanos , Lisossomos/química , Lisossomos/genética , Camundongos , Camundongos Knockout , Peptídeo Hidrolases/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico
19.
Hum Mutat ; 35(3): 368-76, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24375680

RESUMO

Mucolipidosis (ML) II and MLIII alpha/beta are two pediatric lysosomal storage disorders caused by mutations in the GNPTAB gene, which encodes an α/ß-subunit precursor protein of GlcNAc-1-phosphotransferase. Considerable variations in the onset and severity of the clinical phenotype in these diseases are observed. We report here on expression studies of two missense mutations c.242G>T (p.Trp81Leu) and c.2956C>T (p.Arg986Cys) and two frameshift mutations c.3503_3504delTC (p.Leu1168GlnfsX5) and c.3145insC (p.Gly1049ArgfsX16) present in severely affected MLII patients, as well as two missense mutations c.1196C>T (p.Ser399Phe) and c.3707A>T (p.Lys1236Met) reported in more mild affected individuals. We generated a novel α-subunit-specific monoclonal antibody, allowing the analysis of the expression, subcellular localization, and proteolytic activation of wild-type and mutant α/ß-subunit precursor proteins by Western blotting and immunofluorescence microscopy. In general, we found that both missense and frameshift mutations that are associated with a severe clinical phenotype cause retention of the encoded protein in the endoplasmic reticulum and failure to cleave the α/ß-subunit precursor protein are associated with a severe clinical phenotype with the exception of p.Ser399Phe found in MLIII alpha/beta. Our data provide new insights into structural requirements for localization and activity of GlcNAc-1-phosphotransferase that may help to explain the clinical phenotype of MLII patients.


Assuntos
Anormalidades Múltiplas/genética , Retículo Endoplasmático/metabolismo , Mucolipidoses/genética , Mutação de Sentido Incorreto , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Alelos , Animais , Células CHO , Criança , Pré-Escolar , Cricetulus , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Células HEK293 , Células HeLa , Humanos , Masculino , Fenótipo , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Biol Chem ; 288(2): 1238-49, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23192343

RESUMO

The Golgi-resident N-acetylglucosamine-1-phosphotransferase (PT) complex is composed of two α-, ß-, and γ-subunits and represents the key enzyme for the biosynthesis of mannose 6-phosphate recognition marker on soluble lysosomal proteins. Mutations in the PT complex cause the lysosomal storage diseases mucolipidosis II and III. A prerequisite for the enzymatic activity is the site-1 protease-mediated cleavage of the PT α/ß-subunit precursor protein in the Golgi apparatus. Here, we have investigated structural requirements of the PT α/ß-subunit precursor protein for its efficient export from the endoplasmic reticulum (ER). Both wild-type and a cleavage-resistant type III membrane PT α/ß-subunit precursor protein are exported whereas coexpressed separate α- and ß-subunits failed to reach the cis-Golgi compartment. Mutational analyses revealed combinatorial, non-exchangeable dileucine and dibasic motifs located in a defined sequence context in the cytosolic N- and C-terminal domains that are required for efficient ER exit and subsequent proteolytic activation of the α/ß-subunit precursor protein in the Golgi. In the presence of a dominant negative Sar1 mutant the ER exit of the PT α/ß-subunit precursor protein is inhibited indicating its transport in coat protein complex II-coated vesicles. Expression studies of missense mutations identified in mucolipidosis III patients that alter amino acids in the N- and C-terminal domains demonstrated that the substitution of a lysine residue in close proximity to the dileucine sorting motif impaired ER-Golgi transport and subsequent activation of the PT α/ß-subunit precursor protein. The data suggest that the oligomeric type III membrane protein PT complex requires a combinatorial sorting motif that forms a tertiary epitope to be recognized by distinct sites within the coat protein complex II machinery.


Assuntos
Complexo de Golgi/metabolismo , Sinais Direcionadores de Proteínas , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/enzimologia , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Transporte Proteico , Homologia de Sequência de Aminoácidos , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA