Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Ecol ; 30(13): 2988-3006, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285497

RESUMO

Increasing anthropogenic impact and global change effects on natural ecosystems has prompted the development of less expensive and more efficient bioassessments methodologies. One promising approach is the integration of DNA metabarcoding in environmental monitoring. A critical step in this process is the inference of ecological quality (EQ) status from identified molecular bioindicator signatures that mirror environmental classification based on standard macroinvertebrate surveys. The most promising approaches to infer EQ from biotic indices (BI) are supervised machine learning (SML) and the calculation of indicator values (IndVal). In this study we compared the performance of both approaches using DNA metabarcodes of bacteria and ciliates as bioindicators obtained from 152 samples collected from seven Norwegian salmon farms. Results from standard macroinvertebrate-monitoring of the same samples were used as reference to compare the accuracy of both approaches. First, SML outperformed the IndVal approach to infer EQ from eDNA metabarcodes. The Random Forest (RF) algorithm appeared to be less sensitive to noisy data (a typical feature of massive environmental sequence data sets) and uneven data coverage across EQ classes (a typical feature of environmental compliance monitoring scheme) compared to a widely used method to infer IndVals for the calculation of a BI. Second, bacteria allowed for a more accurate EQ assessment than ciliate eDNA metabarcodes. For the implementation of DNA metabarcoding into routine monitoring programmes to assess EQ around salmon aquaculture cages, we therefore recommend bacterial DNA metabarcodes in combination with SML to classify EQ categories based on molecular signatures.


Assuntos
Ecossistema , Salmão , Animais , Aquicultura , Biodiversidade , Código de Barras de DNA Taxonômico , Meio Ambiente , Monitoramento Ambiental , Noruega , Salmão/genética , Aprendizado de Máquina Supervisionado
2.
J Eukaryot Microbiol ; 66(2): 294-308, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30028566

RESUMO

Ciliates are powerful indicators for monitoring the impact of aquaculture and other industrial activities in the marine environment. Here, we tested the efficiency of four different genetic markers (V4 and V9 regions of the SSU rRNA gene, D1 and D2 regions of the LSU rRNA gene, obtained from environmental (e)DNA and environmental (e)RNA) of benthic ciliate communities for environmental monitoring. We obtained these genetic metabarcodes from sediment samples collected along a transect extending from below salmon cages toward the open sea. These data were compared to benchmark data from traditional macrofauna surveys of the same samples. In beta diversity analyses of ciliate community structures, the V4 and V9 markers had a higher resolution power for sampling sites with different degrees of organic enrichment compared to the D1 and D2 markers. The eDNA and eRNA V4 markers had a higher discriminatory power than the V9 markers. However, results obtained with the eDNA V9 marker corroborated better with the traditional macrofauna monitoring. This allows for a more direct comparison of ciliate metabarcoding with the traditional monitoring. We conclude that the ciliate eDNA V9 marker is the best choice for implementation in routine monitoring programs in marine aquaculture.


Assuntos
Aquicultura , Cilióforos/isolamento & purificação , Código de Barras de DNA Taxonômico/veterinária , Meio Ambiente , Monitoramento Ambiental/métodos , Marcadores Genéticos , Animais , Cilióforos/classificação , Cilióforos/genética , Salmão
3.
Environ Microbiol ; 17(6): 2144-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25330396

RESUMO

Protists play a crucial role for ecosystem function(ing) and oxygen is one of the strongest barriers against their local dispersal. However, protistan diversity in freshwater habitats with oxygen gradients received very little attention. We applied high-throughput sequencing of the V9 region (18S rRNA gene) to provide a hitherto unique spatiotemporal analysis of protistan diversity along the oxygen gradient of a freshwater meromictic lake (Lake Alatsee, SW Germany). In the mixolimnion, the communities experienced most seasonal structural changes, with Stramenopiles dominating in autumn and Dinoflagellata in summer. The suboxic interface supported the highest diversity, but only 23 OTUs95% (mainly Euglenozoa, after quality check and removal of operational taxonomic units (OTUs) with less than three sequences) were exclusively associated with this habitat. Eukaryotic communities in the anoxic monimolimnion showed the most stable seasonal pattern, with Chrysophyta and Bicosoecida being the dominant taxa. Our data pinpoint to the ecological role of the interface as a short-term 'meeting point' for protists, contributing to the coupling of the mixolimnion and the monimolimnion. Our analyses of divergent genetic diversity suggest a high degree of previously undescribed OTUs. Future research will have to reveal if this result actually points to a high number of undescribed species in such freshwater habitats.


Assuntos
Eucariotos , Lagos/microbiologia , Lagos/parasitologia , Animais , Ecossistema , Euglenozoários/genética , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Fungos/genética , Variação Genética , Alemanha , Invertebrados/genética , Oxigênio/análise , RNA Ribossômico 18S/genética , Estações do Ano , Estramenópilas/genética
4.
Environ Microbiol ; 16(2): 430-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23848238

RESUMO

Analyses of high-throughput environmental sequencing data have become the 'gold-standard' to address fundamental questions of microbial diversity, ecology and biogeography. Findings that emerged from sequencing are, e.g. the discovery of the extensive 'rare microbial biosphere' and its potential function as a seed-bank. Even though applied since several years, results from high-throughput environmental sequencing have hardly been validated. We assessed how well pyrosequenced amplicons [the hypervariable eukaryotic V4 region of the small subunit ribosomal RNA (SSU rRNA) gene] reflected morphotype ciliate plankton. Moreover, we assessed if amplicon sequencing had the potential to detect the annual ciliate plankton stock. In both cases, we identified significant quantitative and qualitative differences. Our study makes evident that taxon abundance distributions inferred from amplicon data are highly biased and do not mirror actual morphotype abundances at all. Potential reasons included cell losses after fixation, cryptic morphotypes, resting stages, insufficient sequence data availability of morphologically described species and the unsatisfying resolution of the V4 SSU rRNA fragment for accurate taxonomic assignments. The latter two underline the necessity of barcoding initiatives for eukaryotic microbes to better and fully exploit environmental amplicon data sets, which then will also allow studying the potential of seed-bank taxa as a buffer for environmental changes.


Assuntos
Cilióforos/genética , Código de Barras de DNA Taxonômico , Genes de RNAr , Lagos/microbiologia , Áustria , Clorofila/análise , Clorofila A , Cilióforos/classificação , Cilióforos/citologia , DNA de Protozoário/genética , Plâncton/classificação , Plâncton/citologia , Plâncton/genética , RNA Ribossômico 18S/genética , Microbiologia da Água
5.
BMC Microbiol ; 13: 150, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23834625

RESUMO

BACKGROUND: Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. RESULTS: Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. CONCLUSIONS: Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Evolução Biológica , Biota , Cilióforos/classificação , Cilióforos/genética , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Mar Mediterrâneo , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
6.
Extremophiles ; 16(1): 21-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22009262

RESUMO

Only recently, a novel anoxic hypersaline (thalassic) basin in the eastern Mediterranean was discovered at a depth of 3,258 m. The halite-saturated brine of this polyextreme basin revealed one of the highest salt concentrations ever reported for such an environment (salinity of 348‰). Using a eukaryote-specific probe and fluorescence in situ hybridization, we counted 0.6 × 10(4) protists per liter of anoxic brine. SSU rRNA sequence analyses, based on amplification of environmental cDNA identified fungi as the most diverse taxonomic group of eukaryotes in the brine, making deep-sea brines sources of unknown fungal diversity and hotspots for the discovery of novel metabolic pathways and for secondary metabolites. The second most diverse phylotypes are ciliates and stramenopiles (each 20%). The occurrence of closely related ciliate sequences exclusively in other Mediterranean brine basins suggests specific adaptations of the respective organisms to such habitats. Betadiversity-analyses confirm that microeukaryote communities in the brine and the interface are notably different. Several distinct morphotypes in brine samples suggest that the rRNA sequences detected in Thetis brine can be linked to indigenous polyextremophile protists. This contradicts previous assumptions that such extremely high salt concentrations are anathema to eukaryotic life. The upper salinity limits for eukaryotic life remain unidentified.


Assuntos
Biologia Marinha , Água do Mar/química , Cloreto de Sódio/análise , Microbiologia da Água , DNA Complementar , Filogenia , RNA Ribossômico 18S/genética
7.
Mol Ecol ; 19 Suppl 1: 21-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20331767

RESUMO

Sequencing of ribosomal DNA clone libraries amplified from environmental DNA has revolutionized our understanding of microbial eukaryote diversity and ecology. The results of these analyses have shown that protist groups are far more genetically heterogeneous than their morphological diversity suggests. However, the clone library approach is labour-intensive, relatively expensive, and methodologically biased. Therefore, even the most intensive rDNA library analyses have recovered only small samples of much larger assemblages, indicating that global environments harbour a vast array of unexplored biodiversity. High-throughput parallel tag 454 sequencing offers an unprecedented scale of sampling for molecular detection of microbial diversity. Here, we report a 454 protocol for sampling and characterizing assemblages of eukaryote microbes. We use this approach to sequence two SSU rDNA diversity markers-the variable V4 and V9 regions-from 10 L of anoxic Norwegian fjord water. We identified 38 116 V4 and 15 156 V9 unique sequences. Both markers detect a wide range of taxonomic groups but in both cases the diversity detected was dominated by dinoflagellates and close relatives. Long-tailed rank abundance curves suggest that the 454 sequencing approach provides improved access to rare genotypes. Most tags detected represent genotypes not currently in GenBank, although many are similar to database sequences. We suggest that current understanding of the ecological complexity of protist communities, genetic diversity, and global species richness are severely limited by the sequence data hitherto available, and we discuss the biological significance of this high amplicon diversity.


Assuntos
Biodiversidade , DNA Ribossômico/análise , Água do Mar/microbiologia , Análise de Sequência de DNA/métodos , Microbiologia da Água , Análise por Conglomerados , Biologia Computacional , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Dinoflagellida/classificação , Dinoflagellida/genética , Biblioteca Gênica , Sitios de Sequências Rotuladas
8.
Environ Microbiol ; 11(2): 360-81, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18826436

RESUMO

The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea, Acantharea and Euglenozoa, all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities.


Assuntos
Biodiversidade , Eucariotos/classificação , Eucariotos/isolamento & purificação , Sedimentos Geológicos , Animais , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/genética , Biblioteca Gênica , Genes de RNAr , Soluções Hipertônicas , Hipóxia , Mar Mediterrâneo , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
9.
Eng Life Sci ; 19(5): 363-369, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32625015

RESUMO

Induction of an axenic filamentous-like callus growth from the brown algae Fucus vesiculosus is described. Different treatments were investigated in various combinations to develop axenic cultures based on identification of surface symbionts via 18S ribosomal RNA. Moreover, viability was confirmed after such processes by 2,3,5-triphenyl tetrazolium chloride assay that demonstrated an average viability of 29%, relative to nonsterilized explants. After six weeks of a phototrophic cultivation on artificial sea water-12-nitrilotriacetic acid (0.5% w/v agar), a filamentous-like callus growth was observed, which was identified genetically through its mitochondrial DNA after subculturing. Achievement of confirmed marine callus cultures might enrich old previously established blue biotechnology techniques and open new chances for cultivation of brown algae for production of good manufacturing practice-compliant bioproducts.

10.
FEMS Microbiol Ecol ; 91(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25764458

RESUMO

We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes.


Assuntos
Alveolados/classificação , Criptófitas/classificação , Fungos/classificação , Plâncton/classificação , Estramenópilas/classificação , Alveolados/genética , Áustria , Sequência de Bases , Biodiversidade , Criptófitas/genética , Ecologia , Ecossistema , Fungos/genética , Variação Genética/genética , Lagos , Nepal , Filogenia , Plâncton/genética , Análise de Sequência de DNA , Estramenópilas/genética
11.
Protist ; 165(1): 93-111, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24524973

RESUMO

The Haptoria are free-living predatory ciliates living in terrestrial and aquatic habitats all around the world. They belong to a highly diverse class, Litostomatea, whose morphological and molecular classifications harmonize poorly since both approaches produce rather different frameworks. In the present study, we analyzed the genealogy of the litostomateans, including eight new haptorian 18S rRNA gene sequences. Apart from traditional tree-building methods, we also applied phylogenetic networks, split spectrum analysis and quartet likelihood mapping to assess the information content of alignments. These analyses show that: (1) there are several strongly supported monophyletic litostomatean lineages--Rhynchostomatia, Trichostomatia, Haptorida, Lacrymariida, Pleurostomatida, and Didiniida; (2) the Rhynchostomatia are the best candidates for a basal litostomatean group; (3) sister relationship of the Trichostomatia and Haptoria is very likely, which well corroborates the traditional morphology-based classifications; (4) molecular phylogeny of the order Spathidiida is only poorly resolved very likely due to one or several rapid radiation events or due to the incomplete lineage sorting at the rRNA locus; and (5) the basal position of the genera Chaenea and Trachelotractus in molecular trees and phylogenetic networks is very likely a result of class III long-branch effects.


Assuntos
Cilióforos/classificação , Cilióforos/genética , Filogenia , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
12.
Microbiologyopen ; 2(1): 54-63, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23239531

RESUMO

High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs.


Assuntos
Biodiversidade , Eucariotos/classificação , Sedimentos Geológicos/parasitologia , Plâncton/parasitologia , Anaerobiose , Escuridão , Mar Mediterrâneo , Polimorfismo de Fragmento de Restrição
13.
Acta Protozool ; 48(4): 291-319, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20890465

RESUMO

Using standard methods, we studied the morphology and 18S rDNA sequence of some peritrich ciliates from tank bromeliads of Costa Rica, Jamaica, and Ecuador. The new genus Orborhabdostyla differs from Rhabdostyla by the discoidal macronucleus. Two species from the literature and a new species from Ecuadoran tank bromeliads are combined with the new genus: O. previpes (Claparède and Lachmann, 1857) nov. comb., O. kahli (Nenninger, 1948) nov. comb., and O. bromelicola nov. spec. Orborhabdostyla bromelicola is a slender species with stalk-like narrowed posterior half and operculariid/epistylidid oral apparatus. An epistylidid relationship is also suggested by the gene sequence. Vorticella gracilis, described by Dujardin (1841) from French freshwater, belongs to the V. convallaria complex but differs by the yellowish colour and the number of silverlines. The classification as a distinct species is supported by the 18S rDNA, which differs nearly 10% from that of V. convallaria s. str. Based on the new data, especially the very stable yellowish colour, we neotypify V. gracilis with the Austrian population studied by Foissner (1979). Vorticella gracilis forms a strongly supported phyloclade together with V. campanula, V. fusca and V. convallaria, while Vorticellides astyliformis and Vorticella microstoma branch in a separate, fully-supported clade that includes Astylozoon and Opisthonecta. The new genus Vorticellides comprises five small (usually < 60 µm), barrel-shaped species with two epistomial membranes: V. aquadulcis (Stokes, 1887) nov. comb., V. astyliformis (Foissner, 1981) nov. comb., V. platysoma (Stokes, 1887) nov. comb., V. infusionum (Dujardin, 1841) nov. comb., and V. (Spinivorticellides) echini (King, 1931) nov. comb. Two of these species are redescribed in the present study: V. astyliformis and V. aquadulcis, which is neotypified with a Costa Rican population. Pseudovorticella bromelicola nov. spec. differs from the congeners by the location of the two contractile vacuoles and the number of silverlines.

14.
J Eukaryot Microbiol ; 55(2): 100-2, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18318862

RESUMO

At its discovery in 1982, the ciliate genus Colpodidium was assigned to the Class Colpodea. Redescriptions of the type species Colpodidium caudatum caused the establishment of a new family (Colpodidiidae). Based on ontogenetic data, eventually a new order-Colpodidiida-was established and hypothesized to belong to the Class Nassophorea. Despite a remarkable increase in the number of colpodidiid species, no sequence data were available to confirm or reject either class assignment or to assess the phylogenetic validity of the Colpodidiidae and the Colpodidiida. We here retrieved and phylogenetically analyzed the SSrDNA sequences of C. caudatum from a Namibian soil and an as-yet undescribed colpodidiid ciliate from the Chobe River floodplain, Botswana. Bayesian inference methods and evolutionary distance analyses confirmed the assignment of these taxa to the class Nassophorea.


Assuntos
Cilióforos/classificação , Cilióforos/genética , Animais , Botsuana , Cilióforos/isolamento & purificação , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Água Doce/parasitologia , Dados de Sequência Molecular , Namíbia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Solo/parasitologia
15.
Microb Ecol ; 53(2): 328-39, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17264997

RESUMO

A rapid method for the simultaneous extraction of RNA and DNA from eukaryote plankton samples was developed in order to discriminate between indigenous active cells and signals from inactive or even dead organisms. The method was tested using samples from below the chemocline of an anoxic Danish fjord. The simple protocol yielded RNA and DNA of a purity suitable for amplification by reverse transcription-polymerase chain reaction (RT-PCR) and PCR, respectively. We constructed an rRNA-derived and an rDNA-derived clone library to assess the composition of the microeukaryote assemblage under study and to identify physiologically active constituents of the community. We retrieved nearly 600 protistan target clones, which grouped into 84 different phylotypes (98% sequence similarity). Of these phylotypes, 27% occurred in both libraries, 25% exclusively in the rRNA library, and 48% exclusively in the rDNA library. Both libraries revealed good correspondence of the general community composition in terms of higher taxonomic ranks. They were dominated by anaerobic ciliates and heterotrophic stramenopile flagellates thriving below the fjord's chemocline. The high abundance of these bacterivore organisms points out their role as a major trophic link in anoxic marine systems. A comparison of the two libraries identified phototrophic dinoflagellates, "uncultured marine alveolates group I," and different parasites, which were exclusively detected with the rDNA-derived library, as nonindigenous members of the anoxic microeukaryote community under study.


Assuntos
Biologia Marinha/métodos , Plâncton/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Microbiologia da Água , Animais , DNA de Protozoário/genética , DNA Ribossômico/genética , Dinamarca , Eucariotos/genética , Eucariotos/isolamento & purificação , Biblioteca Gênica , Oceanos e Mares , Plâncton/genética , RNA de Protozoário/genética , RNA Ribossômico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
16.
Appl Environ Microbiol ; 72(5): 3626-36, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16672511

RESUMO

To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O(2)/H(2)S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O(2)/H(2)S gradient.


Assuntos
Ecossistema , Células Eucarióticas/classificação , Sulfeto de Hidrogênio/metabolismo , Oxigênio/metabolismo , Água do Mar/parasitologia , Anaerobiose , Animais , DNA Ribossômico/análise , Eucariotos/classificação , Eucariotos/crescimento & desenvolvimento , Dados de Sequência Molecular , Noruega , Filogenia , RNA Ribossômico 18S , Água do Mar/química , Água do Mar/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA